
 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR

Programming Guide

S1

Important Notice
All information in this document is valid for
Agilent E2929A, Agilent E2929B, Agilent E2922A and
Agilent E2922B testcards.

© Agilent Technologies, Inc. 2002

Revision

June 2002

Printed in Germany

Agilent Technologies
Herrenberger Straße 130
D-71034 Böblingen
Germany

Authors: t3 medien GmbH

Warranty

The material contained in this document is provided "as
is," and is subject to being changed, without notice, in
future editions. Further, to the maximum extent permitted
by applicable law, Agilent disclaims all warranties, either
express or implied, with regard to this manual and any
information contained herein, including but not limited to
the implied warranties of merchantability and fitness for a
particular purpose. Agilent shall not be liable for errors or
for incidental or consequential damages in connection
with the furnishing, use, or performance of this document
or of any information contained herein. Should Agilent and
the user have a separate written agreement with warranty
terms covering the material in this document that conflict
with these terms, the warranty terms in the separate
agreement shall control.

Technology Licenses

The hardware and/or software described in this document
are furnished under a license and may be used or copied
only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S.
Government prime contract or subcontract, Software is
delivered and licensed as "Commercial computer
software" as defined in DFAR 252.227-7014 (June 1995), or
as a "commercial item" as defined in FAR 2.101(a) or as
"Restricted computer software" as defined in FAR 52.227-
19 (June 1987) or any equivalent agency regulation or
contract clause. Use, duplication or disclosure of Software
is subject to Agilent Technologies' standard commercial
license terms, and non-DOD Departments and Agencies of
the U.S. Government will receive no greater than
Restricted Rights as defined in FAR 52.227-19(c)(1-2)
(June 1987). U.S. Government users will receive no greater
than Limited Rights as defined in FAR 52.227-14 (June
1987) or DFAR 252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a hazard. It calls attention to
an operating procedure, practice, or the like that, if not
correctly performed or adhered to, could result in damage
to the product or loss of important data. Do not proceed
beyond a CAUTION notice until the indicated conditions
are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to
an operating procedure, practice, or the like that, if not
correctly performed or adhered to, could result in
personal injury or death. Do not proceed beyond a
WARNING notice until the indicated conditions are fully
understood and met.

Trademarks

Windows NT ® and MS Windows ® are U.S. registered
trademarks of Microsoft Corporation.
2 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Contents
Contents

About This Guide 7

Documentation Overview 9

Programming Overview 11

Programming Interfaces 12

C Programming Libraries 13

Generic C-API Functionality 14

Protocol Permutation and Randomization Functionality 15

Exception Handling 15

Getting Started 17

How to Get Started 18

Example for Getting Started 20

Benefits 21

Programming the Exerciser 23

Reading From and Writing To the Memories 26

Downloading Settings and Running the Exerciser 27

Programming the Exerciser as a Requester-Initiator
Device 28

Programming Generic Requester-Initiator Properties 29

Programming Requester-Initiator Block Transfers 30

Programming the Behavior of Block Transfers 35

Programming the Exerciser as a Completer-Target Device
40

Programming a Target Decoder 41

Programming the Configuration Space 45

Programming the Completer-Target Behavior 48

Programming Generic Completer-Target Properties 52

Programming a Split Condition 53
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 3

Contents
Programming the Exerciser as a Completer-Initiator
Device 55

Programming Generic Completer-Initiator Properties 55

Programming the Completer-Initiator Behavior 57

Programming the Exerciser as a Requester-Target Device
61

Programming Generic Requester-Target Properties 61

Programming a Split Completion Decoder 63

Programming the Requester-Target Behavior 63

Controlling the Exerciser 67

Scheduling Block Transfers and Split Completions 68

Programming the Data Generator 73

Programming Errors Injection 76

Programming the Expansion ROM 80

Programming the Data Memory 81

How to Program the Data Memory 83

Example for Programming the Data Memory 83

Programming Data Transfer To and From the Host 84

Example for Host Access 84

Programming PCI-X Interrupts 85

How to Generate PCI-X Interrupts 85

Example for Programming PCI-X Interrupts 87

Programming the Analyzer 89

Programming the Protocol Observer 90

How to Program the Protocol Observer 91

Example for Programming the Protocol Observer 93

Programming Pattern Terms 94

How to Program Pattern Terms 94

Example for Programming Pattern Terms 95

Programming the Trigger Sequencer 96

How to Program the Trigger Sequencer 99

Example for Programming the Trigger Sequencer 100

Programming the Trace Memory 104

How to Program the Trace Memory 105

Example for Programming the Trace Memory 106
4 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Contents
Programming the Performance Sequencer 111

How to Program the Performance Sequencer 113

Example for Programming the Performance Sequencer 115

Programming Protocol Permutator and Randomizer Properties
117

Introduction 118

Contributions of the PCI-X PPR Software 120

Operation Principles 121

Generating Permutations 123

How to Write a Test Program 127

Example Test Design 128

Preparing for PPR Programming 131

How to Prepare for PPR Programming 132

Example for Preparing for PPR Programming 133

Programming Requester-Initiator Block Permutations 134

How to Program RI Block Permutations 139

Example for Programming RI Block Permutations 141

Programming RI Behavior Permutations 142

How to Program RI Behavior Permutations 144

Example for Programming RI Behavior Permutations 146

Programming CT Behavior Permutations 147

How to Program CT Behavior Permutations 148

Example for Programming CT Behavior Permutations 149

Programming CI Behavior Permutations 150

How to Program CI Behavior Permutations 151

Example for Programming CI Behavior Permutations 152

Programming RT Behavior Permutations 153

How to Program RT Behavior Permutations 154

Example for Programming RT Behavior Permutations 155

Generating PPR Reports 155

How to Generate PPR Reports 156

Example for Generating PPR Reports 157

Running a PPR Test 157

How to Run a PPR Test 157

Example for Running a PPR Test 157
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 5

Contents
Analyzing the Report 159

Report Header 159

Report of Block Permutations 160

Report of Requester-Initiator Behavior Permutation 167

Report of Requester-Initiator Block vs. Requester-Initiator
Behavior Permutation 171

Further Options and Possibilities 172

Report Listing 174

Code Listing 185

Synchronizing the Environment 189

Card Status Reporting 191

How to Access the Card Status Register 192

Example for Accessing the Card Status Register 193

Generic Testcard Setup and Power-Up Control 194

How to Program Generic Testcard Properties and Power-Up
Control 195

Programming the Mailbox 195

How to Program the Mailbox 198

Example for Programming the Mailbox 199

Programming the Trigger I/O 199

How to Program the Trigger I/O 200

Example for Programming the Trigger I/O 202

Programming the Display 203

Example for Programming the Display 204
6 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

About This Guide

Programming Interface The Agilent E2920 PCI-X Series testcards are used for testing PCI-X
chips, cards and systems. For this purpose, the testcard allows you to
develop test programs by using:

• C-Application Programming Interface (C-API)

The C-API allows you programmable control for the whole system and
allows you the integration into existing test environments.

• Additional functions performed by the PCI-X Permutator and
Randomizer software (PPR)

These functions allow you to prepare and perform systematic
functional tests at the protocol level, especially exposing PCI-X
devices of a computer system to variable stressful PCI-X traffic.

Programming Guide Structure For developing C programs or for using the command line interface of
the graphical user interface, this Programmer’s Guide gives you good
background knowledge of the programming models for the
Agilent E2920 PCI-X Series testcards.

The programming guide contains the following sections:

• “Programming Overview” on page 11 gives basic information about
writing C programs, such as where to find the required libraries,
compilation and error checking.

This section also provides information about the first steps to be
performed in any C program, such as how the testcard is connected to
the control PC and initialized.

• “Programming the Analyzer” on page 89 provides information about
programming models for all tasks of PCI-X analysis to monitor the
PCI-X bus, to detect specific events, to measure and to evaluate the
occurrences of signals on the bus.

• “Programming the Exerciser” on page 23 provides information about
the programming models for programming the testcard as a initiator
and as a target device and for resources shared by both, such as data
memory and compare unit.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 7

About This Guide
• “Programming Protocol Permutator and Randomizer Properties” on

page 117 provides an overview of the features of the software, and
shows how a test program is designed and implemented.

• “Synchronizing the Environment” on page 189 provides information
about the programming models for the available application
interfaces, such as trigger I/O sequencer, LED display and mailbox.
8 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Documentation Overview

This section shows you the different types of documents offered by
Agilent Technologies and gives you an overview of which documents are
available when you work with the Agilent E2929A/B PCI-X Exerciser and
Analyzer.

All documents are valid for both Agilent E2929A and Agilent E2929B
testcards. The following documents are available:

Getting Started Guide • Getting Started Guide

Introduces standard analysis features and provides an example of how
to set up the protocol observer.

This guide also gives detailed information about the hardware and
interfaces.

User’s Guides • Agilent E2929A/B Opt. 300 PCI-X Exerciser User’s Guide

Provides information on programming the testcard as an initiator
and/or target device. It shows you how to actively stimulate the PCI-X
bus.

This guide shows how to:

– Initiate data transfers on the PCI-X bus
(act as requester-initiator).

– Act as completer-target.

– Handle split completion transactions
(act as completer-initiator).

– Handle open requests (act as requester-target).

• Agilent E2929A/B Opt. 100 PCI-X Analyzer User’s Guide

Provides information on how to examine the behavior of a PCI-X
device on the bus and shows how to perform functional tests such as
data compares.

• Agilent E2929A/B Opt. 200 PCI-X Performance Optimizer

User’s Guide

Provides all features that are needed to evaluate and optimize any
device under test in terms of the performance.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 9

Documentation Overview
• Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s

Guide

Provides information on how to set up test programs using the
C functions described in the corresponding C-API/PPR Reference.

GUI and C-API/PPR References • Agilent E2929A/B Windows and Dialog Boxes Reference

Provides reference information on all windows and dialog boxes of
the Agilent E2920 graphical user interface (GUI).

• Agilent E2929A/B Opt. 320 C-API/PPR Reference

Describes all C functions, types and definitions of the application
programming interface of the Agilent E2929A/B PCI-X testcard.

This reference also provides the commands and abbreviations that are
used in the command line interface (CLI) of the graphical user
interface.

• Agilent E2922A/B Opt. 320 C-API/PPR Reference

Describes all C functions, types and definitions of the application
programming interface of the Agilent E2922A/B PCI-X testcard.

This reference also provides the commands and abbreviations that are
used in the command line interface (CLI) of the graphical user
interface.
10 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming Overview

The following sections give basic information about the C-API and the
PPR software:

• The ways in programming the testcard are shown in “Programming

Interfaces” on page 12.

• Where to find the libraries, what you must do when writing C
programs, and how to compile the programs depending on the
operating system, can be found in “C Programming Libraries” on

page 13.

• The features of the C-API and the PPR software can be found in
“Generic C-API Functionality” on page 14 and “Protocol

Permutation and Randomization Functionality” on page 15.

• Error handling macros, which are needed to return error codes of
C functions, are explained in “Exception Handling” on page 15.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 11

Programming Overview Programming Interfaces
Programming Interfaces

The testcard can be programmed in the following ways:

• By writing C programs

The testcard is shipped with an application programming interface
(the C-API) for the C programming language.

See “C Programming Libraries” on page 13.

• By using the command line interface (CLI)

The CLI provides an easy-to-use graphical user interface for entering
commands. Descriptions of the CLI commands can be found in the

C-API/PPR Reference, together with their corresponding C function.

For more information, refer to “Using the Command Line Interface”
in the Agilent E2929A/B Opt. 300 PCI-X Exerciser User’s Guide.

• By writing TCL programs

See file <instdir>\PCIX\src\tcl\readme.txt.

Hints for programming on 64 bit
systems

If you plan to run the PCI-X software under 64 bit Itanium systems, you
should read the following.

Targeted are currently the 64 bit Microsoft .NET Server OSes.

To install, you need a separate installation file, named setup64.exe,
located in the CD's ia64 directory. Do not install the 32bit setup.exe.

On 64bit Itanium systems the following is true:

• Kernel mode:

Drivers always need to be 64 bit drivers; 32 bit drivers wont work.
Especially, this means that you can't use the existing 32 bit drivers.
Our 64 bit drivers are named b_2kpci_64.sys, b_2khif_64.sys,
b_usb_64.sys and b_usbgen_64.sys.

• User mode:

If you are starting an application, the .exe (and all needed dlls) need to
be either all 32 bit files or all need to be 64 bit files, i.e. you cannot mix
them. For example a 64 bit .exe cannot use a 32 bit dll.

Our 64-bit dlls always have the suffix "xp64", e.g. capixp64.dll (instead
of capikk.dll in 32 bit mode).
12 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

C Programming Libraries Programming Overview
• The PCI-X GUI always only runs in 32bit mode (so they alway needs
the corresponding 32 bit dlls).

If you want to write your own C-API programs, you can use the
provided 64bit dlls though and run your program as 64 bit executable
(32 bit mode is forced only when using the GUI).

C Programming Libraries

The Installation Wizard stores by default the library files, user
documentation and programming examples to the PC. You can also
develop your test program on a different PC (in the “Demo/Offline Mode”
of the software) and later upload your application to the control PC.

Directory Structure All required files are automatically installed with the control software
and can be found in the subdirectories of the Agilent PCI-X Series home
directory. The following figure shows the directory structure on a
Windows NT system.

The home directory is:
C:\Program Files\Agilent\E2920 PCI(X) Series 1.4\PCIX\

When developing C programs for the testcard, you need to:

• Include only the header file xpciapi.h into your program, because it
includes all necessary header files.

Include Files

Library Files

Examples

Source Files
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 13

Programming Overview Generic C-API Functionality
• Enter the paths to include files, library files, and/or source files into
the directory settings of your developing environment.

– For Windows 2000, you also have to include xcapikk.lib to the
developing environment.

– For Windows NT, you also have to include xcapint.lib to the
developing environment.

Examples Many ready-to-use example programs can be found in the samples
directory. The user documentation for hardware, software, and options
uses many of these examples to explain the functions.

Platform-Dependence All sample programs can be compiled with Microsoft VC 6.0.

Communication with E2920 Series PCI-X testcards uses the E2920 Series
C-API. The C-API is the interface for testcard communication. The C-API
is available in binary form for a number of operating systems, and as
compilable source code. A workspace for compiling the CAPI is available
under src\capi\capi.dsw.

Generic C-API Functionality

The C-API is used to program all analyzer, exerciser and performance
optimizer functionalities.

For all features of the testcard, refer to:

• Agilent E2929A/B Getting Started Guide

• Agilent E2929A/B Opt. 300 PCI-X Exerciser User’s Guide

• Agilent E2929A/B PCI-X Analyzer User’s Guide

• Agilent E2929A/B Opt. 200 PCI-X Performance Optimizer User’s

Guide
14 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Protocol Permutation and Randomization Functionality Programming Overview
Protocol Permutation and
Randomization Functionality

The PCI-X Protocol Permutation and Randomization software adds
functions to the C-API for preparing and performing systematic
functional tests at the protocol level, especially tests for exposing PCI-X
devices of a computer system to variable stressful PCI-X traffic.

For more information on the PPR functionality, refer to “Introduction”

on page 118.

Exception Handling

Try blocks are an efficient way of catching errors in a series of C-API
function calls and are particularly useful for situations where some
cleanup is required after an error occurs.

Error Checking The BX_TRY() macro in the BX_TRY_BEGIN {} section checks if there was
an error in the most recent call. If an error occurs, processing in the TRY
block stops and the program proceeds with the BX_TRY_CATCH {} section.

All functions in TRY macros must return bx_errtype..

Error Handling In case of an error, the easiest action is to print out the error string.

To get the error string, use the following function calls:

• BestXLastErrorStringGet(handle) if you know the handle (handle-
based error checking).

• BestXErrorStringGet(error number) if you know the error number
(non-handle-based error checking)
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 15

Programming Overview Exception Handling
Example with Handle-Based Error Checking
The principle of exception handling is shown by means of the following
example:

bx_errtype SomeFunction(bx_handletype handle)
{

BX_TRY_VARS_NO_PROG; /* declares all necessary variables

BX_TRY_BEGIN /* starts a try block
{

// API calls using the BX_TRY macro (returning bx_errtype)

BX_TRY(BestXPing(handle));
BX_TRY(BestXDisplayStringWrite(handle, "PCIX"));

}

BX_TRY_CATCH /* starts the catch block
/* (optional)

{

// errorhandling (cleanup,ignore and/or handle error)
// (optional)

BX_TRY_RET=BX_E_OK; /* ignores the error;
/* you can also switch over
/* BX_TRY_RET and react to
/* different errors.

printf("%s\n", BestXLastErrorStringGet(handle));
}

BX_ERRETURN(BX_TRY_RET) /* the reason for the failure
/* you can evaluate this macro

}

Non-Handle-Based Error Checking
The following functions do not provide handles, therefore they cannot be
used with handle-based error checking methods:

• BestXDevIdentifierGet()

• BestXPCICfgMailboxReceiveRegRead()

• BestXPCICfgMailboxSendRegWrite()
16 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Getting Started Programming Overview
Handle Initialization The following function initializes the handle. The handle is valid only if
this function returns the handle successfully:

• BestXOpen()

Calling the Macro This macro can be called in the following way:

• BX_TRY(BestDevIdentifierGet(vendor_id, device_id, number,

&devid));

For error codes, refer to “bx_errtype” in the C-API/PPR Programming

Reference.

Getting Started

The first step in running tests on the testcard is to initialize the testcard
and its connections. The testcard can be controlled via PCI-X port,
RS-232 serial interface or Fast Host Interface.

Some typical initialization routines for each type of control connection
are shown in “Example for Getting Started” on page 20.

PCI-X Port The testcard communicates via the PCI-X bus through its configuration
space.

No system resources are required to program the testcard. The PCI-X
port is especially useful when the DUT controls the testcard in order to
run parallel and synchronized tests. This port should not be used if
changing the system by the testcard is not allowed (for example, for
memory mapping).

RS-232 Serial Interface The RS-232 serial interface of the Agilent E2929A/B testcard provides an
easy-to-use control interface, which is available on all PCs and notebook
computers. It can be run at 9600, 19200, 38400, and 57600 baud.

USB Port The USB port of the Agilent E2929A/B testcard can be used to connect
more than 4 testcards to one host without using PCI-X connections. With
an USB hub, as many as 256 PCI-X testcards can be controlled
simultaneously.

The first USB connection to a testcard to be found is assigned to “0”, the
second to “1”, and so forth. The order in which the cards are found is not
predictable. To see which card is connected to the session, use
BestXPing and watch the LEDs (after the BestXOpen call).
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 17

Programming Overview Getting Started
Fast Host Interface Port The Fast Host Interface port of the Agilent E2929A/B testcard provides
an easy-to-install connection to the control PC with higher throughput
than an RS-232 interface in both read and write directions.

The control PC must be equipped with the Fast Host Interface card
(delivered with the PCI-X Analyzer) and connected to the parallel port of
the testcard.

Specification Maximum transfer rate: 4 MB/s (using the Fast Host Interface of the
Agilent E2929A/B testcard).

How to Get Started
The following figure shows which commands would be used to operate
the testcard at different ports. This figure also shows the integration of
these functions into the test program.

Programming Steps ´The testcard is initialized as follows:

1 Open a session with BestXOpen. This call:

– Initializes the session data structures.

– Establishes the connection to the testcard and checks for valid
card-type and revision.

– Returns the session handle on success.

PCI-XPort RS-232

BestXDevIdentifierGet(
vendor id,device id, index,&devid)

BestXOpen(interface,portnum)

BestXRS232BaudRateSet(baudrate)

/ * ApplicationProgram*/
…

BestXClose()

Fast Host Interface USB
18 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Getting Started Programming Overview
NOTE If the PCI-X Bus is used as the controlling interface port, use
BestXDevIdentifierGet to get the device number of the testcard, which is
is used in BestXOpen for device identification.

If the RS-232 serial interface is used, you have to set the baud rate with
BestXRS232BaudRateSet.

2 After inserting the application code, close the session with
BestXClose. This call:

– Frees the session data structures.

– Disconnects from the testcard.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 19

Programming Overview Getting Started
Example for Getting Started
Task Write a C-API application that writes the text “Hello World” to the

hexadecimal display on the E2929A card.

NOTE The following example can be used as framework for all further code
fragments using the C-API in this document.

Implementation #include "xpciapi.h"

int main(int argc, char* argv[])
{

int i;

BX_TRY_VARS_NO_PROG;

/* Enter additional local variable declarations here */
bx_handletype handle;

BX_TRY_BEGIN
{

/* Open the communication session to testcard, initialize */
/* internal structures */

BX_TRY(BestXOpen(&handle, BX_PORT_RS232, BX_PORT_COM1));

/* If using RS232, set baud rate: */
BX_TRY(BestXRS232BaudRateSet(handle, BX_BD_57600));

/* Insert here your C-API calls */
/* For example:*/
/* Write “Hello World” to the display.*/

for (i=0;i<10;i++)
{

BX_TRY (BestXDisplayStringWrite(handle, "HEL-"));
BX_TRY (BestXDisplayStringWrite(handle, "HEL\\"));
BX_TRY (BestXDisplayStringWrite(handle, "HEL|"));
BX_TRY (BestXDisplayStringWrite(handle, "HEL/"));

}

/* Close the session to deallocate memory. */
BX_TRY(BestXClose(handle));

}

BX_TRY_CATCH
{

printf(BestXErrorStringGet(BX_TRY_RET));
/* cleanup, if necessary */

}
BX_ERRETURN(BX_TRY_RET);

}

20 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Benefits Programming Overview
NOTE This program can also be found under
<INST_DIR>\ PCIX\Samples\HelloWorld.cpp.

Benefits

When setting up tests, you can take advantage of the following features
of the Exerciser and Analyzer and the PCI-X Permutator and Randomizer
software:

• Creating controlled protocol corner cases

The software makes it possible to expose device or system under test
to corner case traffic, to add system and parity errors, to assert and
deassert signal lines and so on.

Tests can be set up that add as many Exerciser and Analyzers as
required and let them transfer data blocks repeatedly to generate
enough traffic to stress the PCI-X system.

• Data-integrity testing

The software makes it possible to use the Exerciser and Analyzer
memory functions to comfortably write, read and compare data
blocks.

• Emulating typical peripheral traffic

The software makes it possible to substitute test devices with
Exerciser and Analyzers. Testcards can be set up to behave like any
device. The memory is programmable with any content. There is no
need to exchange devices in the system for testing reasons to get
“realistic” traffic.

The PCI-X Permutator and Randomizer software intensifies the
possibilities by systematically varying transfer parameters to examine
protocol corner cases.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 21

Programming Overview Benefits
• Storing and analyzing bus traffic

The software makes it possible to find illegal behavior on protocol and
signal level using advanced listers (waveform viewer, bus cycle lister,
transaction lister) of the (optional) graphical user interface of
Exerciser and Analyzer. These listers allow a detailed analysis of all
events that have occurred on the considered bus.

• Stressing on multiple PCI/PCI-X buses

The software makes it possible to use multiple testcards to generate
stress traffic from one bus system to another over PCI/PCI-X-to-PCI-
/PCI-X bridges.

• Deterministic and reproducible tests

In contrast to PCI-X traffic generated by other test devices, the
generated variations are deterministic and reproducible. This
guarantees coverage and reproducible tests. The permutation
progress can be read out on block level or block page level. In the case
of an error or a bus hang, exactly the same behavior can be repeated
for reproduction of the error. Alternatively, the test can be continued
after that error.

• PCI-X protocol behavior permutations within programmable

constraints

The software makes it possible to specify the values to be varied for
each requester-initiator, completer-target, completer-initiator, and
requester-target separately. Thus, testing time can be reduced by
focusing on cases of interest. Problems can be quickly isolated.

• Detailed report

The software provides a printable report, which shows which protocol
behaviors are completely permutated against which other protocol
behaviors after how many of data transfers.

• Predictable testing time

The test’s run time estimated by the PCI-X Protocol Permutation and
Randomization can also be written to the report.
22 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser

The PCI-X Exerciser testcard can simulate a requester-initiator, a
completer-target, a completer-initiator or a requester-target device or all
together at the same time. All these can be controlled by functions of the
C-API.

This enables the testcard to emulate and/or test any device in your
system under test.

The following figure shows the programmable components of the
testcard’s exerciser.

The concept for programming the exerciser is as follows:

Defining Blocks 1. Defining up to 256 requester-initiator data blocks

The blocks describe what data is transferred over the PCI-X bus.
Each block transaction coming out of the requester-initiator block

memory is put into one of two queues.

See “Programming Requester-Initiator Block Transfers” on page 30.

PCI-XBus

Requester

Decoder Target
Behavior

Initiator
Behavior

Queue
(2)

Completer

DecoderTarget
Behavior

Initiator
Behavior

Queue
(4)

Split
Condition

Scheduler
Transaction

DataMemory

Data
Compare

Data
Generator

Configuration
Space

Initiator
Block

Memory

Initiator State
Machine

DataPath

Target State
Machine
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 23

Programming the Exerciser
Defining Behaviors 2. Defining requester-initiator (RI) behaviors

The behaviors describe how data transferred over the PCI-X bus is
executed.

If any target replies to a transfer and requests a split transaction, the
data block attributes are moved internally to the split transaction map
for further use. The split transaction map can manage up to 32 split
transactions.

When completing split transactions, the requester-target behaviors
are used to control the transfer.

The transaction that will be given a split response is determined by
the split response condition.

See “Programming the Behavior of Block Transfers” on page 35.

3. Defining completer-target (CT) behaviors

The completer-target behaviors control how the target reacts to
requests. The completer-target behaviors control, for example,
whether a target is able to reply to a transfer with a split response.

The completer-target can manage up to five transactions.

See “Programming the Completer-Target Behavior” on page 48 for
more information.

4. Setting the split response condition

To identify a request that will be given a split response, the split
response condition property must be set.

See “Programming a Split Condition” on page 53 for more
information.

5. Defining completer-initiator (CI) behaviors

The completer-initiator behaviors define when and how requests are
completed that have been replied to with a split response.

See “Programming the Completer-Initiator Behavior” on page 57
for more information.

6. Defining requester-target (RT) behaviors

When completing split transactions, the requester-target behaviors
are used to control the transfer.

See “Programming the Requester-Target Behavior” on page 63 for
more information.

7. Programming the transaction scheduler

The transaction scheduler decides which transactions (completer-
initiator or requester-initiator transactions) are performed.

See “Scheduling Block Transfers and Split Completions” on page 68
for more information.
24 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser
8. Programming completer-target (CT) decoders for different types
of accesses (I/O, memory, configuration cycles, expansion ROM) and
the requester-target decoder for decoding split completion
transactions.

See “Programming a Target Decoder” on page 41 for more
information.

Resources 9. Defining the data to be transferred

All data needed for performing transactions is supplied by the
onboard data memory or from the onboard real-time generator.

NOTE The data path is shared by initiator and target as a common resource.

See “Programming the Data Memory” on page 81 and
“Programming the Data Generator” on page 73 for more
information.

10. Performing data compare

The real-time data compare unit is used to compare data that is
written to the memory against the actual memory content.

Data compare can also be performed on the data generator.

11. Accessing the configuration space of the testcard

The configuration space of the testcard (public and private section)
can be employed as a resource. In order to simulate all the possible
types of PCI-X devices, the configuration space header of the testcard
is freely programmable.

See “Programming the Configuration Space” on page 45 for more
information.

The exerciser further allows you to generate PCI-X interrupts. See
“Programming PCI-X Interrupts” on page 85.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 25

Programming the Exerciser Reading From and Writing To the Memories
Reading From and Writing To the
Memories

The C-API uses preparation functions (…Get() and …Set() functions) for
reading and writing properties from and to the host. These functions do
not access the hardware.

To access the hardware, use the …Read(), …Prog(), or …Write()
functions.

The following figure shows the C-API architecture.

DUT

Hardware

Host

Accessing the Card: ...Read() and ...Prog() funct ions

Firmware

RS232 PCI-XFastHost USB

Preparat ion: ...Get() and ..Set() funct ions

Split Condit ion Decoder

Generic
Propert ies

Block
Propert ies

Conf ig Space

Behavior
Propert ies
26 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Downloading Settings and Running the Exerciser Programming the Exerciser
Downloading Settings and
Running the Exerciser

This section describes global exerciser functions.

Downloading All available properties first are programmed to the host storage. If you
set all properties, you have to write them to the testcard.

To write all settings to the testcard, use BestXExerciserProg.

Reading To read settings from the testcard, use BestXExerciserRead. This
function can either read the entire memory or only generic properties.

Running the Exerciser To run the exerciser, use BestXExerciserRun.

Stopping the Exerciser To stop the exerciser, use BestXExerciserStop, where the current
transaction will be completed.

Exerciser Reset To reset all bus state machines (initiator and target) and to clear the
requester-initiator intention, use BestXExerciserReset.

CAUTION The call BestXExerciserReset might lead to a behavior that does not
conform to the protocol. All state machines are reset, regardless of their
current state. Hence, the bus state will be unclear. This call should only
be used if a bus is hung.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 27

Programming the Exerciser Programming the Exerciser as a Requester-Initiator Device
Programming the Exerciser as a
Requester-Initiator Device

To program the testcard’s exerciser as a requester-initiator device means
programming the testcard to initiate data transfers via PCI-X bus either
to a target device under test, or to the testcard’s own target
(completer-target). The latter test case can be used to increase bus load.

The following need to be programmed for the testcard to perform data
transfer:

1. Generic requester-initiator properties

Generic requester-initiator properties determine the behavior of the
testcard and are valid during a complete exerciser run. They
determine, for example, whether the requester-initiator should start
immediately or conditionally after a trigger event.

See “Programming Generic Requester-Initiator Properties” on

page 29.

2. The requester-initiator transactions to be performed

Transactions can be summarized into blocks. The properties of each
block and its transactions, such as PCI-X bus address, number of
dwords to be transferred or the bus command, are programmed in the
block transfer memory.

See “Programming Requester-Initiator Block Transfers” on page 30.

3. The behaviors to be used with the transactions

The behaviors determine how the transactions should be executed,
for example, whether and how often the requester-initiator
disconnects its current sequence. This information is located in the
requester-initiator behavior memory.

See “Programming the Behavior of Block Transfers” on page 35.

4. The data to be used for the transactions

For this purpose, the data memory and the data generator can be used
as a data resource by the requester-initiator.

See “Programming the Data Memory” on page 81 and
“Programming the Data Generator” on page 73.

5. The way of running the exerciser

See “Downloading Settings and Running the Exerciser” on page 27.
28 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Requester-Initiator Device Programming the Exerciser
Programming Generic Requester-Initiator
Properties
Generic requester-initiator properties are valid for a complete exerciser
run.

You can program the following generic requester-initiator properties:

• How many block transfers were programmed (BX_RIGEN_NUMBLK)

Valid values are 1 … 256.

• How often the block transfers will be repeated (BX_RIGEN_REPEATBLK)

Valid values are 1 … 0xfffffff, BX_RIGEN_REPEATBLK_INFINITE

• The number of valid RI-behaviors (BX_RIGEN_NUMBEH)

Valid values are 1 … 256.

• The values for the seven skip registers
(BX_RIGEN_SKIP_REG1 … BX_RIGEN_SKIP_REG7)

Valid values are 0 … 1023.

How to Program Generic Requester-Initiator Properties
The following figure shows the functions used to program the generic
requester-initiator properties.

Programming Steps To set generic requester-initiator property values on the host:

1 Set all generic requester-initiator properties to default values with
BestXRIGenDefaultSet.

2 Set each property with BestXRIGenSet to the appropriate value.

To get the value of one property, use BestXRIGenGet.

Host

Preparat ion: ...Get() and ..Set() funct ions

Split Condit ion Decoder

Generic
Propert ies

Block
Propert ies

Conf ig Space

Behavior
Propert ies

BestXRIGenDefaultSet

BestXRIGenSet

BestXRIGenGet
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 29

Programming the Exerciser Programming the Exerciser as a Requester-Initiator Device
Example for Programming Generic Requester-Initiator
Properties

Task Define that two requester-initiator behaviors should be executed twice.

Implementation /* Define that two programmed block transfers are repeated twice */

BX_TRY(BestXRIGenSet(handle, BX_RIGEN_NUMBLK, 2));
BX_TRY(BestXRIGenSet(handle, BX_RIGEN_REPEATBLK, 2));

/* Define that five behaviors for the block transfers are
programmed */

BX_TRY(BestXRIGenSet(handle, BX_RIGEN_NUMBEH, 5));

Programming Requester-Initiator Block
Transfers
A requester-initiator block transfer means to transfer a contiguous block
of data from one place to the other. A block transfer is specified by:

• Read/Write operation

• The bus command:

– Memory read DWORD or memory write

– I/O read or write, configuration read or write

– Memory read block or memory write block

– Split completion

– Interrupt acknowledge

– Alias to memory read or write block

– Reserved cycle

• Size (number of bytes (up to 4 GB))

The information for a block transfer is stored in the requester-initiator
block memory. This memory can hold up to 256 block transfer entries.

Operation Source Destination

Read physical bus address exerciser data

Write exerciser data physical bus address
30 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Requester-Initiator Device Programming the Exerciser
How to Program Block Transfers
To program requester-initiator block transfers:

1 Set all entries of the requester-initiator block memory to default
values.

Use BestXRIBlockDefaultSet.

2 Program each block transfer to one line of the requester-initiator
block transfer memory. Each transfer is specified by several block
transfer properties.

For each block transfer property to be programmed, use
BestXRIBlockSet.

To query the value of a requester-initiator block property, use
BestXRIBlockGet.

3 Set all generic requester-initiator properties to default values.

Use BestXRIGenDefaultSet.

4 Define how many times each block transfer should be executed.

– First, set all generic requester-initiator properties to default values
with BestXRIGenDefaultSet

– Then, use BestXRIGenSet to set the requester-initiator generic
property BX_RIGEN_NUMBLK to the appropriate value (1 … 256).

For more information about generic requester-initiator properties, see
“Programming Generic Requester-Initiator Properties” on page 29.

5 Define how often the previously specified block transfers should be
executed.

Use BestXRIGenSet and set the requester-initiator generic property
BX_RIGEN_REPEATBLK to the appropriate value. Valid values are
BX_RIGEN_REPEATBLK_INFINITE, 1 … 0xfffffff.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 31

Programming the Exerciser Programming the Exerciser as a Requester-Initiator Device
The following figure shows the memory design, the available functions to
program the requester-initiator block memory, and the execution order.

6 Download all exerciser settings and properties to the hardware with
BestXExerciserProg.

7 Start the transfer(s) with BestXExerciserRun.

Examples for Programming Block Transfers

Task (Example 1) The task is as follows:

• Program the E2929A so that it starts two block transfers:

– First block transfer: One memory read block of 495 bytes from bus
address 100030fd\h and

– Second block transfer: One I/O write of 7 bytes to bus address
1000ff\h.

Use the internal address starting at 0\h.

RI block t ransfer #0

RI block t ransfer #1

RI block transfer #2

…

RI block t ransfer #255

BestXRIBlockSet(handle, 1, BX_RIBLK_INTADDR, 0)

BestXRIBlockGet(handle, 0, BX_RIBLK_INTADDR, &v)

Execution Programming

BestXRIBlockDefaultSet (handle, 1)

Run

BX_RIGEN_NUMBLK = = 2

0

1

2

…

255
32 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Requester-Initiator Device Programming the Exerciser
Implementation (Example 1) /* Set the number of block transfers to be executed and how
often they should be executed */

BX_TRY(BestXRIGenDefaultSet(handle);
BX_TRY(BestXRIGenSet(handle, BX_RIGEN_NUMBLK, 2));
BX_TRY(BestXRIGenSet(handle, BX_RIGEN_REPEATBLK, 1));

/* Program a block transfer to memory line 0*/

BX_TRY(BestXRIBlockDefaultSet(handle, 0));
BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_BUSADDR_LO,

0x100030fdUL));

BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_BUSCMD,
BX_RIBLK_BUSCMD_MEM_READBLOCK));

BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_NUMBYTES, 495));
BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_INTADDR, 0));

/* Program a block transfer to memory line 1 */

BX_TRY(BestXRIBlockDefaultSet(handle, 1));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_BUSADDR_LO,
0x1000ffUL));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_BUSCMD,
BX_RIBLK_BUSCMD_IO_WRITE));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_NUMBYTES, 7));
BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_INTADDR, 0));

/* Write the settings to the testcard and run the exerciser */

BX_TRY(BestXExerciserProg(handle));
BX_TRY(BestXExerciserRun(handle));

Task (Example 2) The task is as follows:

• Program the same block transfers as in example 1.

This time:

– Use the data generator as resource.

– Put the memory read with 531 bytes into queue B and the I/O write
into queue A.

– Set the relaxorder and nosnoop bits.

– Let the exerciser repeat the transfers 5 times.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 33

Programming the Exerciser Programming the Exerciser as a Requester-Initiator Device
Implementation (Example 2) /* Define that two block transfers are programmed that are repeated
5 times */

BX_TRY(BestXRIGenSet(handle, BX_RIGEN_NUMBLK, 2));
BX_TRY(BestXRIGenSet(handle, BX_RIGEN_REPEATBLK, 5));

/* Program a block transfer to memory line 0*/

BX_TRY(BestXRIBlockDefaultSet(handle, 0));
BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_BUSADDR_LO,

0x100030fdUL));

BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_BUSCMD,
BX_RIBLK_BUSCMD_MEM_READBLOCK));

BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_NUMBYTES, 531));
BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_INTADDR, 0));
BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_RELAXORDER, 1));
BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_NOSNOOP, 1));
BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_RESOURCE,

BX_RIBLK_RESOURCE_DATAGEN));

BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_QUEUE,
BX_RIBLK_QUEUE_B));

/* Program a block transfer to memory line 1 */

BX_TRY(BestXRIBlockDefaultSet(handle, 1));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_BUSADDR_LO,
0x1000ffUL));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_BUSCMD,
BX_RIBLK_BUSCMD_IO_WRITE));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_NUMBYTES, 7));
BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_INTADDR, 0));
BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_RELAXORDER, 1));
BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_NOSNOOP, 1));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_RESOURCE,
BX_RIBLK_RESOURCE_DATAGEN));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_QUEUE,
BX_RIBLK_QUEUE_A));

/* Write the settings to the testcard and run the exerciser */

BX_TRY(BestXExerciserProg(handle));
BX_TRY(BestXExerciserRun(handle));
34 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Requester-Initiator Device Programming the Exerciser
Programming the Behavior of Block
Transfers
The requester-initiator behaviors define how block transfers are
executed. In particular, behaviors control the partitioning of blocks into
sequences and the reordering of blocks.

The requester-initiator behaviors are stored in the requester-initiator
behavior memory. Each memory line holds one behavior for the block
transfer. When the exerciser is started, one behavior is assigned to one
block transfer.

The following figure shows the correlation between block transfers and
behaviors, and how to generate sequences.

How to create sequences in detail is shown in the following figure by
means of an example.

RI Block
256*

144

RI Block
256* 144

Started

Block

Transfer A

Started

Block
Transfer A

Started

Block

Transfer B

Started

Block
Transfer B

CreateRI SequenceCreateRI Sequence

RI Sequence

Fill if empty

FreeTags RI Behavior

256* 71

BlockTransfer Memory
Behavior Memory

Behavior 3

Behavior 2

Behavior 1

Behavior 0

Block Transfer 4

Block Transfer 3

Block Transfer 2

Block Transfer 1

Block Transfer 0
Block Transfer 0

Block Transfer 1

Block Transfer 2

Block Transfer 3

Block Transfer 4

QueueA

QueueB

BX_RIBLK_QUEUE BX_RIBEH_QUEUE BX_RIBEH_REPEAT
Block Transfer 1

Block Transfer 2

Block Transfer 3

Block Transfer 4

Behavior 1

Behavior 2

Behavior 2

Behavior 3

Block Transfer 0 Behavior 0

5 RI Sequences
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 35

Programming the Exerciser Programming the Exerciser as a Requester-Initiator Device
Each requester-initiator behavior has the following programmable
properties.

• Requester-initiator queue (BX_RIBEH_QUEUE)

Valid values are BX_RIBEH_QUEUE_A, BX_RIBEH_QUEUE_B,
BX_RIBEH_QUEUE_NEXT.

By setting this behavior and the corresponding block property
(BX_RIBLK_QUEUE), you can determine if blocks get executed in order or
if they bypass each other.

• Fixed tag number or any free tag if possible (BX_RIBEH_TAG)

• Byte count for the sequence (BX_RIBEH_BYTECOUNT)

Valid values are 1 … 4096.

This property partitions the value of the block transfer property
BX_RIBLK_NUMBYTES into sequences of a maximum length of 4096 bytes.

• Disconnect at ADB number N (BX_RIBEH_DISCONNECT)

This property allows you to break a sequence into multiple
transactions. The requester-initiator disconnects at every N-th
allowable disconnect boundary (ADB). Typically, the requester-
initiator will not disconnect, because the data transfer will have been
completed when it requests a transaction.

When the requester-initiator disconnects a sequence, it resumes the
disconnected sequence. It is not possible to execute some other action
in between.

• Clock delay before assertion of REQ# (BX_RIBEH_DELAY)

This property allows you to vary latencies between transactions.
Sometimes the minimum achievable latency to the next requester-
initiator transaction is restricted by the most recent event and
sometimes by the data path configuration.

• Number of address steps (BX_RIBEH_STEPS)

The number of address steps is the number of clock cycles between
the assertion of GNT# and the assertion of FRAME# plus two clock cycles.
These two clock cycles are designed into the register-to-register
interface of PCI-X.

• 64-bit data transfer request (BX_RIBEH_REQ64)

Valid values are:

– 1 = Assert the REQ64# signal

– 0 = don’t assert the REQ64# signal
36 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Requester-Initiator Device Programming the Exerciser
• Number of repeats (BX_RIBEH_REPEAT)

The current behavior is repeated N times before the next behavior is
used. Valid values are 1 … 256.

• Tag number to be used for this sequence (BX_RIBEH_TAG)

Valid values are 0 … 31.

• Number of clock cycles that REQ# is asserted after the address phase
(BX_RIBEH_RELREQ)

Valid values are 1 … 2047.

• Number of the skip register (BX_RIBEH_SKIP)

Valid values are 1 … 7, BX_RIBEH_SKIP_NO.

The number is used if this behavior was repeated. The value of the
selected skip register is then added to the start address of the next
sequence.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 37

Programming the Exerciser Programming the Exerciser as a Requester-Initiator Device
How to Program the Behavior of Block Transfers
To program the behavior of requester-initiator block transfers:

1 Set all entries of the requester-initiator behavior memory to default
values.

Use BestXRIBehDefaultSet.

2 Program each behavior to one line of the requester-initiator behavior
memory. Each behavior is specified by several behavior properties.

For each behavior property to be programmed, use BestXRIBehSet.

To query the value of a requester-initiator behavior property, use
BestXRIBehGet.

3 Define how many behaviors should be executed.

– First, set all generic requester-initiator properties to default values
with BestXRIGenDefaultSet.

– Use BestXRIGenSet and set the requester-initiator generic property
BX_RIGEN_NUMBEH to the appropriate value (1 … 256).

For more information about generic requester-initiator properties, see
“Programming Generic Requester-Initiator Properties” on page 29.

4 Define how often the current behavior is applied before the next
behavior is used.

Use BestXRIBehSet and set the requester-initiator generic property
BX_RIBEH_REPEAT to the appropriate value. Valid values are 1 … 256.

The following figure shows the memory design, the available functions to
program the requester-initiator block memory, and the execution order.

RI behavior #1

RI behavior #2

…

RI behavior #255

Run

BestXRIBehSet (handle, 2, BX_RIBEH_STEPS, 4)

BestXRIBehGet(handle, 0, BX_RIBEH_STEPS, &v)

Execution Programming

BestXRIBehDefaultSet (handle, 2)

BX_RIGEN_NUMBEH = = 3 RI behavior #00

1

2

…

255
38 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Requester-Initiator Device Programming the Exerciser
5 Download all exerciser settings and properties to the hardware with
BestXExerciserProg.

6 Start the transfer(s) with BestXExerciserRun.

Example for Programming the Behavior of Block
Transfers

Task Perform the following task:

• Program the same block transfers as in “Task (Example 2)” on

page 33.

• Let the requester-initiator disconnect the ReadBlock at each ADB. The
maximum sequence length for the ReadBlock transfers should be
321 bytes.

• Use sequence tag #30 for the I/O write transfer.

• Apply the I/O and ReadBlock addresses 3 clocks before asserting
FRAME#.

Implementation /* Program the behavior of the block transfers */

BX_TRY(BestXRIGenDefaultSet(handle);
BX_TRY(BestXRIGenSet(handle, BX_RIGEN_NUMBEH, 5));

/* Program the behavior properties steps, bytecount, and disconnect
to behavior memory line 0 */

BX_TRY(BestXRIBehDefaultSet(handle, 0));
BX_TRY(BestXRIBehSet(handle, 0, BX_RIBEH_STEPS, 3));
BX_TRY(BestXRIBehSet(handle, 0, BX_RIBEH_BYTECOUNT, 321));
BX_TRY(BestXRIBehSet(handle, 0, BX_RIBEH_DISCONNECT, 1));

/* Program the behavior properties steps, bytecount, and disconnect
to behavior memory line 1 */

BX_TRY(BestXRIBehDefaultSet(handle, 1));
BX_TRY(BestXRIBehSet(handle, 1, BX_RIBEH_STEPS, 3));
BX_TRY(BestXRIBehSet(handle, 1, BX_RIBEH_BYTECOUNT, 321));
BX_TRY(BestXRIBehSet(handle, 1, BX_RIBEH_DISCONNECT, 1));

/* Program the behavior properties steps and the tag to behavior
memory line 2 */

BX_TRY(BestXRIBehDefaultSet(handle, 2));
BX_TRY(BestXRIBehSet(handle, 2, BX_RIBEH_STEPS, 3));
BX_TRY(BestXRIBehSet(handle, 2, BX_RIBEH_TAG, 30));
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 39

Programming the Exerciser Programming the Exerciser as a Completer-Target Device
/* Program the behavior properties steps and the tag to behavior
memory line 3 */

BX_TRY(BestXRIBehDefaultSet(handle, 3));
BX_TRY(BestXRIBehSet(handle, 3, BX_RIBEH_STEPS, 3));
BX_TRY(BestXRIBehSet(handle, 3, BX_RIBEH_TAG, 30));

/* Program the behavior properties steps and the tag to behavior
memory line 4 */

BX_TRY(BestXRIBehDefaultSet(handle, 4));
BX_TRY(BestXRIBehSet(handle, 4, BX_RIBEH_STEPS, 3));
BX_TRY(BestXRIBehSet(handle, 4, BX_RIBEH_TAG, 30));

/* Program the behaviors to the testcard’s exerciser and run the
exerciser. */

BX_TRY(BestXExerciserProg(handle));
BX_TRY(BestXExerciserRun(handle));

Programming the Exerciser as a
Completer-Target Device

A PCI-X completer-target device is the target of a transaction. It decodes
all PCI-X bus transactions except split completion transactions.

To program the exerciser so that it acts as a PCI-X completer-target
device, you have to:

• Set up the target decoders provided by the testcard for I/O, memory
and configuration cycles.

See “Programming a Target Decoder” on page 41.

Because the decoders are closely linked to entries in the configuration
space, you can program the decoders’ base address, size and prefetch
also by modifying the configuration space header. See “Programming

the Configuration Space” on page 45.

NOTE The option to completely program the configuration space header is
provided for very sophisticated tests, for example, to test systems
without a BIOS or with a very rudimentary BIOS.
40 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Completer-Target Device Programming the Exerciser
• Define how the completer-target reacts to transactions driven onto the
bus.

See “Programming the Completer-Target Behavior” on page 48.

• Define how many behaviors are used before the first one is used again.

See “Programming Generic Completer-Target Properties” on

page 52.

• Specify the internal data resources.

See “Programming the Data Memory” on page 81 and
“Programming the Data Generator” on page 73.

Programming a Target Decoder
The completer-target needs the address range information to decide
whether it has to react to transactions driven onto the bus. There are
different types of decoders for different types of accesses (I/O, memory,
configuration cycles).

Types of Decoders The testcard provides the following target decoders:

• Three programmable memory decoders (six bars) for memory or I/O
accesses (BX_DEC_BAR0 … BX_DEC_BAR5)

These decoders are programmable regarding size, location, prefetch,
compare and resource.

• Expansion ROM Decoder (BX_DEC_EXPROM)

This decoder is programmable regarding size and resource (flash).

• Configuration Decoder (BX_DEC_CONFIG)

This decoder is only programmable regarding size (on/off) and reacts
on PCI-X and PCI accesses.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 41

Programming the Exerciser Programming the Exerciser as a Completer-Target Device
NOTE The decoders are closely linked to entries in the configuration space. See
the following figure.

Decoders Linked to the Configuration
Space Header

The following figure shows the different decoders, the respective entries
in the configuration space header and how both can be programmed.

For programming the configuration space header, see “Programming

the Configuration Space” on page 45.

Standard and expansion ROM decoders are equipped with a set of
parameters that define their properties, such as whether the decoded
memory space is prefetchable, or which data resource they are
connected to. The configuration cycle decoder is only programmable
regarding its size.

Resource Size

Expansion ROM Decoder

SizeResource
Resource Base
Resource Size
Compare

Configuration Space
Value Mask

BAR0 (offset:10\h)
BAR1 (offset:14\h)
BAR2 (offset:18\h)
BAR3 (offset:1c\h)
BAR4 (offset:20\h)
BAR5 (offset:24\h)

Expansion ROM (offset:30\h)

ResourceSTD (Memory or I/O) Decoder 1

Resource
Resource Base
Resource Size
Compare

Size
Location
Prefetch

Resource Size

Configuration Cycle Decoder

Size

BestXTDecoderSet /Get
BestXConfRegSet/Get

BestXConfRegMaskSet /Get
42 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Completer-Target Device Programming the Exerciser
How to Program a Decoder
To program a decoder:

1 Set all target decoder properties on the host to default values. Use
BestXTDecoderDefaultSet.

2 To set the properties for the target decoder on the host, you can:

– Set all properties for a BAR decoder (BAR 0 … 5) with
BestXTDecoderAllSet.

– Set one property for one decoder (BAR 0 … 5, EXPROM and
configuration decoder) with BestXTDecoderSet.

To get a property value, use BestXTDecoderGet.

Dependencies between decoder and their programmable properties
are shown in the following tables.

Programmable Properties Which properties can be programmed for which decoder is shown in
the following table:

Depending on the selected resource (BX_DECP_RESOURCE), programming
the behavior of the completer-target is restricted. See the following
table.

Decoder(s) Property Value(s)

Standard

EXPROM

CONFIG

BX_DECP_SIZE Memory: 0, 2 … 63

I/O: 0, 2 … 31

ExpROM: 0, 11 … 24

Config: 0, 1

Standard BX_DECP_LOCATION BX_DECP_LOCATION_MEM
BX_DECP_LOCATION_IO

Standard BX_DECP_PREFETCH 0, 1

Standard

EXPROM

BX_DECP_RESOURCE BX_DECP_RESOURCE_MEM
BX_DECP_RESOURCE_GEN
BX_DECP_RESOURCE_FLASH

Standard

EXPROM

BX_DECP_RESBASE 0 … 224 in steps of 4

Standard

EXPROM

BX_DECP_RESSIZE 2… 24

Standard BX_DECP_COMPARE 0, 1
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 43

Programming the Exerciser Programming the Exerciser as a Completer-Target Device
Programmable Behaviors The following table shows the dependencies between resource and
behavior.

3 Write the properties to the testcard with BestXExerciserProg.

Example for Programming a Decoder

Task Set up a standard decoder with the following properties:

• Decoder size 12, Memory, Prefetch

• Resource: Date memory, resource size 12, internal resource base
address 0

• Base Address: 0x10003000

Implementation /* Setup the memory decoder (baseaddress = 10003000\h,

size=c\h) */

bx_int32 dsize=0xcUL;
bx_int32 bbase=0x10003000UL;

BX_TRY(BestXTDecoderDefaultSet(handle));
BX_TRY(BestXTDecoderSet(handle, BX_DEC_BAR0, BX_DECP_LOCATION,

BX_DECP_LOCATION_MEM));

BX_TRY(BestXTDecoderSet(handle, BX_DEC_BAR0, BX_DECP_SIZE, dsize));
BX_TRY(BestXTDecoderSet(handle, BX_DEC_BAR0, BX_DECP_PREFETCH, 1));

BX_TRY(BestXTDecoderSet(handle, BX_DEC_BAR0, BX_DECP_RESOURCE,
BX_DECP_RESOURCE_MEM));

BX_TRY(BestXTDecoderSet(handle, BX_DEC_BAR0, BX_DECP_RESBASE,
0x0));

BX_TRY(BestXTDecoderSet(handle, BX_DEC_BAR0, BX_DECP_RESSIZE,
dsize));

Resource Decoder(s) Behavior

Memory, Generator Standard

EXPROM

Programmable

Flash EXPROM Fixed,
retries until data available,
single data phase disconnect

Config space CONFIG Fixed
44 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Completer-Target Device Programming the Exerciser
Programming the Configuration Space
You can program every single register of the testcard’s configuration
space header.

Usually, all settings in the configuration space header that need to be
made when starting the system are either made by the BIOS or by
programming target decoders. The latter applies to settings concerning
the base address registers.

NOTE The option to completely program the configuration space header is
provided for very sophisticated tests, for example, to test systems
without a BIOS or with a very rudimentary BIOS.

For every bit of the various registers in the configuration space header,
you can determine whether it is fixed (read-only) or programmable from
outside (BIOS) (read/writeable). For both types, values can be specified
as required for BIOS configuration during system startup:

• Determine read-only values, for example, a “Vendor ID”, which can
then be evaluated by the BIOS.

• Determine read/writeable values, for example, base address register
entries. They can be used by the BIOS to determine the wanted size of
the decoded address range and will then be overwritten with the
actual base address.

How to Modify the Configuration Space
To modify the configuration space header:

1 Set the register value and the register mask that configures the status
of a bit within a register on the host.

– To set a register mask, use BestXConfRegMaskSet.

In the 32-bit mask:

– To set the value of a register, use BestXConfRegSet.

CAUTION Do not set several address spaces to the same decoding location,
because the system under test can crash or could even be damaged.

0 means: This bit is fixed (read-only) and its value cannot be
changed.

1 means: This bit is programmable.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 45

Programming the Exerciser Programming the Exerciser as a Completer-Target Device
The following figure shows the dependencies for accessing the
configuration space between the programming port (C-API) and the
PCI-X/PCI interface (BIOS).

2 Write the values to the testcard with BestXExerciserProg.

Conf ig Space Register Value Conf ig Read Access

Bitw ise Enable

Register
Mask

Config Write Access

Conf ig Read AccessBestXConfRegSet

BestXConfRegMaskSet

Programming Port PCI-X / PCI

02 13

11111111

31

0 = Memory
1 = I/O

10 = 64 Bit Address Space
00 = 32 Bit Address Space

1 = prefetachable
0 = not prefetchable

Read / Write Read only

11111111 00001111 00000000 Mask for decoder size 12

Register value
46 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Completer-Target Device Programming the Exerciser
Example for Modifying the Configuration Space

Task Set up a I/O decoder with base address = 100000\h and size=a\h and
define the data generator as data source for the data transfer.

Implementation // Set up the I/O decoder (base address = 100000\h, size=a\h

dsize=0xaUL;
bbase=0x100000UL;

/* Specify the Standard decoder BAR 4 to claim transactions to I/O
address ranges. This automatically sets the size to default. */

BX_TRY(BestXTDecoderSet(handle, BX_DEC_BAR4, BX_DECP_LOCATION,
BX_DECP_LOCATION_IO));

/* Program the mask. Offset for BAR 4 is 20/h. See also the figure

in “Decoders Linked to the Configuration Space Header” on page 68.*/

BX_TRY(BestXConfRegMaskSet(handle, 0x20UL, ((~0)<<dsize)));

/* Specify the base address and location */
BX_TRY(BestXConfRegSet(handle, 0x20UL, (bbase & ((~0)<<dsize))+1));

/* Specify the data generator as source for the data transfer and
define the base address and the size for the source */

BX_TRY(BestXTDecoderSet(handle, BX_DEC_BAR4, BX_DECP_RESOURCE,
BX_DECP_RESOURCE_GEN));

BX_TRY(BestXTDecoderSet(handle, BX_DEC_BAR4, BX_DECP_RESBASE,
0x40000));

BX_TRY(BestXTDecoderSet(handle, BX_DEC_BAR4, BX_DECP_RESSIZE,
dsize));
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 47

Programming the Exerciser Programming the Exerciser as a Completer-Target Device
Programming the Completer-Target
Behavior
After setting up and enabling the decoders and base address registers,
the Agilent PCI-X Exerciser is able to react to accesses from requester-
initiator devices. The behavior of how it reacts can be programmed by
setting completer-target behavior properties.

The completer-target behaviors are stored in the completer-target
behavior memory. Each memory entry holds one behavior; these are
successively used for each request.

Each completer-target behavior has the following programmable
properties:

• Decode speed A, B or C (BX_CTBEH_DECSPEED)

NOTE Decode speed A is only supported up to 66 MHz.

• Accept 64-bit wide data transfer (BX_CTBEH_ACK64)

With this attribute, the target signals that it is capable of accepting
64-bit accesses.

– 1 = Assert the ACK64# signal

– 0 = don’t assert ACK64#

• Initial target response (BX_CTBEH_INITIAL)

This property defines how the completer-target responds after waiting
the number of cycles specified with BX_CTBEH_LATENCY.

If the split condition is met, this behavior is ignored and a split
response is given after the number of wait cycles defined with
BX_CTBEH_SPLITLATENCY.

For more information about split response conditions, see
“Programming a Split Condition” on page 53.

• Number of initial wait states (BX_CTBEH_LATENCY)

Valid values are 3 … 34.

• Subsequent target response (BX_CTBEH_SUBSEQ)

This property specifies the target response in subsequent data phases.
It comes only into effect if the corresponding BX_CTBEH_INITIAL
completer-target behavior was set to BX_CTBEH_INITIAL_ACCEPT.

• Subsequent data phases (BX_CTBEH_SUBSEQPHASE)

Number of clock cycles for BX_CTBEH_SUBSEQ. Valid values for the
subsequent data phases are 0 … 2047.
48 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Completer-Target Device Programming the Exerciser
• Split latency (BX_CTBEH_SPLITLATENCY)

Number of wait states until a split response is signaled. Only valid if a
split condition is true.

• Split response enable (BX_CTBEH_SPLITENABLE)

This property defines if a split response is generated. You must set up
the decoder in the Target Decode window accordingly for this
property to have an effect.

• Number of repeats (BX_CTBEH_REPEAT)

The current behavior is repeated N times before the next behavior is
used. Valid values are 1 … 65536.

How to Program the Completer-Target Behavior
To program the completer-target behavior:

1 Set all entries of the completer-target behavior memory to default
values.

Use BestXCTBehDefaultSet.

2 Program each behavior to one line of the completer-target behavior
memory. Each behavior is specified by several behavior properties.

For each behavior property to be programmed, use BestXCTBehSet.

To query the value of a completer-target behavior property, use
BestXCTBehGet.

3 Set all generic completer-target properties to default values.

Use BestXCTGenDefaultSet.

4 Define how many behaviors should be executed.

– Use BestXCTGenSet and set the completer-target generic property
BX_CTGEN_NUMBEH to the appropriate value (1 … 256).

For more information about generic completer-target properties, see
“Programming Generic Completer-Target Properties” on page 52.

5 Define how often the current behavior is applied before the next
behavior is used.

Use BestXCTBehSet and set the completer-target generic property
BX_CTBEH_REPEAT to the appropriate value. Valid values are 1 … 65536.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 49

Programming the Exerciser Programming the Exerciser as a Completer-Target Device
The following figure shows the memory design, the available functions to
program the completer-target behavior memory, and the execution order.

6 Download all exerciser settings and properties to the hardware with
BestXExerciserProg.

Example for Programming the Completer-Target
Behavior

Task Perform the following task:

• Set up the completer-target so that it:

– Uses decode speed A, B and C

– Signal RETRY 3 times

• Program single data phase disconnect and disconnect at next ADB.

• Initial latency should be 8.

• Signal split response on an access to address range 0x100032XX with
memory read block.

CT behavior #0

CT behavior #1

CT behavior #2

…

CT behavior #255

BX_CTGEN_NUMBEH = = 3

BestXCTBehSet (handle, 2, BX_CTBEH_ACK64, 1)

BestXCTBehGet(handle, 0, BX_CTBEH_ACK64, &v)

Execution Programming

BestXCTBehDefaultSet(handle, 2)

Power Up or
Exerciser Prog

0

1

2

…

255
50 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Completer-Target Device Programming the Exerciser
Implementation /* Program that 3 completer-target behaviors are used before the

first one is used again */

BX_TRY(BestXCTGenDefaultSet(handle));

BX_TRY(BestXCTGenSet(handle, BX_CTGEN_NUMBEH, 3));

/* Program the behavior properties decode speed, initial, repeat
and latency to behavior memory line 0 */

BX_TRY(BestXCTBehDefaultSet(handle, 0));

BX_TRY(BestXCTBehSet(handle, 0, BX_CTBEH_DECSPEED,
BX_CTBEH_DECSPEED_A));

BX_TRY(BestXCTBehSet(handle, 0, BX_CTBEH_INITIAL,
BX_CTBEH_INITIAL_RETRY));

BX_TRY(BestXCTBehSet(handle, 0, BX_CTBEH_REPEAT, 3));

BX_TRY(BestXCTBehSet(handle, 0, BX_CTBEH_LATENCY, 8));

/* Program the behavior properties decode speed and initial to
behavior memory line 1 */

BX_TRY(BestXCTBehDefaultSet(handle, 1));

BX_TRY(BestXCTBehSet(handle, 1, BX_CTBEH_DECSPEED,
BX_CTBEH_DECSPEED_B));

BX_TRY(BestXCTBehSet(handle, 1, BX_CTBEH_INITIAL,
BX_CTBEH_INITIAL_SINGLE));

/* Program the behavior properties decode speed, initial, and the
target response in subsequent data phases to behavior memory line 2
*/

BX_TRY(BestXCTBehDefaultSet(handle, 2));

BX_TRY(BestXCTBehSet(handle, 2, BX_CTBEH_DECSPEED,
BX_CTBEH_DECSPEED_C));

BX_TRY(BestXCTBehSet(handle, 2, BX_CTBEH_INITIAL,
BX_CTBEH_INITIAL_ACCEPT));

BX_TRY(BestXCTBehSet(handle, 2, BX_CTBEH_SUBSEQ,
BX_CTBEH_SUBSEQ_DISCONNECT));

BX_TRY(BestXCTBehSet(handle, 2, BX_CTBEH_SUBSEQPHASE, 1));
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 51

Programming the Exerciser Programming the Exerciser as a Completer-Target Device
Programming Generic Completer-Target
Properties
Generic completer-target properties are valid for a complete exerciser
run.

You can program the following generic requester-initiator property:

• How many completer-target behaviors are used before the first one is
used again (BX_CTGEN_NUMBEH)

Valid values are 1 … 256.

How to Program Generic Completer-Target Properties
The following figure shows the functions used to program the generic
completer-target properties.

Programming Steps To set generic completer-target property values on the host:

1 Set all generic requester-initiator properties memory to default values
with BestXCTGenDefaultSet.

2 Set each property with BestXCTGenSet to the appropriate value.

To get the value of one property, use BestXCTGenGet.

Host

Preparat ion: ...Get() and ...Set() funct ions

Split Condit ion Decoder

Generic
Propert ies

Block
Propert ies

Conf ig Space

Behavior
Propert ies

BestXCTGenDefaultSet

BestXCTGenSet

BestXCTGenGet
52 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Completer-Target Device Programming the Exerciser
Example for Programming Generic Completer-Target
Properties

Task Program that three behaviors (0 … 2) are executed before the first one is
used again.

Implementation /* Define that three behaviors are used before the first one is
used again */

BX_TRY(BestXCTGenDefaultSet(handle));
BX_TRY(BestXCTGenSet(handle, BX_CTGEN_NUMBEH, 3));

Programming a Split Condition
Split condition properties identify a particular type of requests that shall
be given a split response and determine in which request queue those
requests will be put for later completion. You can define up to four
different request types (split decoder 0 … 3).

The request that shall be given a split response can be identified by:

• The address value shown in the address phase

This is programmed by setting the address value
(BX_CTSPLIT_ADDRVAL_HI and BX_CTSPLIT_ADDRVAL_LO) and a mask
(BX_CTSPLIT_ADDRMASK_HI and BX_CTSPLIT_ADDRMASK_LO).

The mask defines which bits of the AD signal must be equal to the
corresponding bit in the address value:

– Bit = 0: The corresponding AD[n] signal is don’t care.

– Bit = 1: The corresponding AD[n] signal must be equal to the
corresponding bit in the address value.

• One of the 16 possible PCI-X commands (BX_CTSPLIT_CMDS)

• The decoder (BX_CTSPLIT_DEC)
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 53

Programming the Exerciser Programming the Exerciser as a Completer-Target Device
How to Program a Split Condition
To program a split condition:

1 Depending on the split decoder you want to program, set all split
decoder properties for each decoder to default values with
BestXCTSplitCondDefaultSet.

2 Define the request that should be given a split response by specifying
the split decoder (0 … 3) and the split condition with
BestXCTSplitCondSet.

3 Define the request queue where those requests will be put for later
completion

Examples for Programming a Split Condition

Task Signal split response on an access to address range 0x100032XX with
memory read block.

Implementation /* Set split decoder 0 … 3 to default values */

BX_TRY(BestXCTSplitCondDefaultSet(handle, 0));
BX_TRY(BestXCTSplitCondDefaultSet(handle, 1));
BX_TRY(BestXCTSplitCondDefaultSet(handle, 2));
BX_TRY(BestXCTSplitCondDefaultSet(handle, 3));

/* Set the address mask for split decoder 0 */

BX_TRY(BestXCTSplitCondSet(handle, 0, BX_CTSPLIT_ADDRMASK_LO,
0xFFFFFF00));

BX_TRY(BestXCTSplitCondSet(handle, 0, BX_CTSPLIT_ADDRMASK_HI,
0x00000000));

BX_TRY(BestXCTSplitCondSet(handle, 0, BX_CTSPLIT_ADDRVAL_LO,
0x10003200));

BX_TRY(BestXCTSplitCondSet(handle, 0, BX_CTSPLIT_CMDS,
BX_CTSPLIT_CMDS_READBLOCK));

BX_TRY(BestXCTSplitCondSet(handle, 0, BX_CTSPLIT_DEC,
BX_CTSPLIT_DEC_ANY));
54 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Completer-Initiator Device Programming the Exerciser
Programming the Exerciser as a
Completer-Initiator Device

A PCI-X completer-initiator device initiates PCI-X split completion
transactions only. The completer-initiator can start a completion
transaction only after the completer-target has given a split response.

To program the exerciser so that is acts as a PCI-X completer-initiator
device, you have to:

• Set up generic completer-initiator properties. See “Programming

Generic Completer-Initiator Properties” on page 55.

• Define how the completer-target intiates split completion
transactions.

See “Programming the Completer-Initiator Behavior” on page 57.

Programming Generic Completer-Initiator
Properties
Generic completer-initiator properties are valid for a complete exerciser
run.

You can program the following generic requester-initiator properties:

• How many completer-initiator behaviors are used before the first one
is used again (BX_CIGEN_NUMBEH)

Valid values are 1 … 256.

• The content of the split completion message with
BX_CIGEN_MESSAGE_AD. Set this property to a 32-bit value that defines
the content of the split completion message as follows:

– Bits 19 … 31 will be placed on the AD bus during the data phase.

– Bits 0 … 11 are determined by the remaining byte count.

– Bits 12 … 18 are reserved.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 55

Programming the Exerciser Programming the Exerciser as a Completer-Initiator Device
How to Program Generic Completer-Initiator Properties
The following figure shows the functions used to program the generic
completer-initiator properties.

Programming Steps To set generic completer-initiator property values on the host:

1 Set the whole generic completer-initiator properties memory to
default values with BestXCIGenDefaultSet.

2 Set each property with BestXCIGenSet to the appropriate value.

To get the value of one property, use BestXCIGenGet.

Host

Preparat ion: ...Get() and ...Set() funct ions

Split Condit ion Decoder

Generic
Propert ies

Block
Propert ies

Conf ig Space

Behavior
Propert ies

BestXCIGenDefaultSet

BestXCIGenSet

BestXCIGenGet
56 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Completer-Initiator Device Programming the Exerciser
Programming the Completer-Initiator
Behavior
The completer-initiator behaviors are stored in the completer-initiator
behavior memory. Each memory entry holds one behavior; these are
successively used for each request.

Each completer-initiator behavior has the following programmable
properties:

• Select the request queue (BX_CIBEH_QUEUE) from which the next
completion is generated:

– Select the next queue (BX_CIBEH_NEXT)

– Select no queue (BX_CIBEH_NONE)

The requests will be accumulated for out-of-order completion.

– Select any non-empty available queue (BX_CIBEH_QAUTO)

– Select queue A, B, C or D with the option to skip the behavior if the
currently selected queue is empty.

– Select queue A, B, C or D with the option to wait until the currently
selected queue gets a request, if this queue is empty.

NOTE Take care when using this option, because requests in other queues
will not be completed if the selected queue does not receive a
request.

• Select the size of the next partial completion transaction
(BX_CIBEH_PARTITION):

– The full byte count is transferred without disconnecting the
completion (BX_CIBEH_PARTITION_NO).

– The completion is disconnected at every N-th allowable disconnect
boundary after the current start address. Valid values are 1 … 63.

• Split completion message (BX_CIBEH_ERRMESSAGE)

If generation of a split completion message has been selected, a user-
defined split completion message is generated, as opposed to a normal
split completion transaction. The latter message, which would
otherwise be generated, contains the data read or the default write
completion message.

For information on how to define the content of the message, see
“Programming Generic Completer-Initiator Properties” on page 55.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 57

Programming the Exerciser Programming the Exerciser as a Completer-Initiator Device
NOTE Only one type of split completion message can be generated per test
run.

• Wait for conditional start pattern (BX_CIBEH_CONDSTART)

This property defines if the completion starts unconditionally or if a
conditional start pattern must have occurred:

– BX_CIBEH_CONDSTART_NO

Unconditional start.

– BX_CIBEH_CONDSTART_ONCE1

After the exerciser has been started, block execution waits until the
conditional start pattern 1 has occurred at least once.

– BX_CIBEH_CONDSTART_WAIT1

After the end of the previous requester-initiator sequence, block
execution waits until the conditional start pattern 1 has occurred.

– BX_CIBEH_CONDSTART_ONCE2

After the exerciser has been started, block execution waits until the
conditional start pattern 2 has occurred at least once.

Pattern 1 and pattern 2 can be programmed with the Command Line
Interface (CLI).

• Clock delay before assertion of REQ# (BX_CIBEH_DELAY)

This property allows you to vary latencies between transactions.
Sometimes the minimum achievable latency to the next completer-
initiator transaction is restricted by the most recent event and
sometimes by the data path configuration.

• Number of address steps (BX_CIBEH_STEPS)

The number of address steps is the number of clock cycles between
the assertion of GNT# and the assertion of FRAME# plus two clock cycles.
These two clock cycles are designed into the register-to-register
interface of PCI-X.

• 64-bit wide data transfer request (BX_CIBEH_REQ64)

• Release REQ# N clocks after the address phase (BX_CIBEH_RELREQ)

• Number of repeats (BX_CIBEH_REPEAT)

The current behavior is repeated N times before the next behavior is
used. Valid values are 0 … 256.
58 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Completer-Initiator Device Programming the Exerciser
How to Program the Completer-Initiator Behavior
To program the completer-initiator behavior:

1 Set all entries of the completer-initiator behavior memory to default
values.

Use BestXCIBehDefaultSet.

2 Program each behavior to one line of the completer-initiator behavior
memory. Each behavior is specified by several behavior properties.

For each behavior property to be programmed, use BestXCIBehSet.

To query the value of a completer-initiator behavior property, use
BestXCIBehGet.

3 Define how many behaviors should be executed.

– First, set all generic completer-initiator properties to default values
with BestXCIGenDefaultSet.

– Then, use BestXCIGenSet and set the completer-initiator generic
property BX_CIGEN_NUMBEH to the appropriate value (1 … 256).

For more information about generic completer-target properties, see
“Programming Generic Completer-Initiator Properties” on page 55.

4 Define how often the current behavior is applied before the next
behavior is used.

Use BestXCIBehSet and set the completer-initiator generic property
BX_CIBEH_REPEAT to the appropriate value. Valid values are 1 … 256.

The following figure shows the memory design, the available functions to
program the completer-initiator behavior memory, and the execution
order.

CI behavior #0

CI behavior #1

CI behavior #2

…

CI behavior #255

BX_CIGEN_NUMBEH = = 3

Pow
erUp

or
ExerciserProg

BestXCIBehSet(handle, 2, BX_CIBEH_STEPS, 4)

BestXCIBehGet (handle, 0, BX_CIBEH_STEPS, &v)

Execution Programming

BestXCIBehDefaultSet (handle, 2)

0

1

2

…

255
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 59

Programming the Exerciser Programming the Exerciser as a Completer-Initiator Device
5 Download all exerciser settings and properties to the hardware with
BestXExerciserProg.

Example for Programming the Completer-Initiator
Behavior

Task Perform the following task:

• Set the completer-target behavior to the default.

• Program the E2929A to signal split response on each transfer.

• Delay the split completion for 100 clock cycles.

• Disconnect the completion at each ADB.

Implementation /* Program completer-target behavior to default */

BX_TRY(BestXCTGenDefaultSet(handle));
BX_TRY(BestXCTBehDefaultSet(handle, 0));

/* Set up the split condition for split decoder 0 */

BX_TRY(BestXCTSplitCondDefaultSet(handle, 0));

BX_TRY(BestXCTSplitCondSet(handle, 0, BX_CTSPLIT_DEC,
BX_CTSPLIT_DEC_ANY));

BX_TRY(BestXCTSplitCondSet(handle, 0, BX_CTSPLIT_ADDRMASK_LO, 0));
BX_TRY(BestXCTSplitCondSet(handle, 0, BX_CTSPLIT_ADDRMASK_HI, 0));
BX_TRY(BestXCTSplitCondSet(handle, 0, BX_CTSPLIT_CMDS, 0xFFFFUL));

BX_TRY(BestXCTSplitCondSet(handle, 0, BX_CTSPLIT_QUEUE,
BX_CTSPLIT_QUEUE_NEXT));

/* Program the behavior properties to behavior memory line 0 */

BX_TRY(BestXCIGenDefaultSet(handle));

BX_TRY(BestXCIBehDefaultSet(handle, 0));

BX_TRY(BestXCIBehSet(handle, 0, BX_CIBEH_QUEUE,
BX_CIBEH_QUEUE_AUTO));

BX_TRY(BestXCIBehSet(handle, 0, BX_CIBEH_PARTITION, 1));
BX_TRY(BestXCIBehSet(handle, 0, BX_CIBEH_DELAY, 100));

BX_TRY(BestXExerciserProg(handle));
60 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Requester-Target Device Programming the Exerciser
Programming the Exerciser as a
Requester-Target Device

A PCI-X requester-target device is the target of a split completion
transaction. It decodes PCI-X split completion transactions only.

To program the exerciser so that is acts as a PCI-X requester-target
device, you have to:

• Set up the requester-target decoder.

See “Programming a Split Completion Decoder” on page 63.

• Define how the requester-target reacts to transactions driven onto the
bus.

See “Programming the Requester-Target Behavior” on page 63.

• Define how many behaviors are used before the first one is used again.

See “Programming Generic Requester-Target Properties” on page 61.

Programming Generic Requester-Target
Properties
Generic requester-target properties are valid for a complete exerciser
run.

You can program the following generic requester-target property:

• How many requester-target behaviors are used before the first one is
used again (BX_RTGEN_NUMBEH)

Valid values are 1 … 256.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 61

Programming the Exerciser Programming the Exerciser as a Requester-Target Device
How to Program Generic Requester-Target Properties
The following figure shows the functions used to program the generic
requester-target properties.

Programming Steps To set generic requester-target property values on the host:

1 Set the whole generic requester-target properties memory to default
values with BestXRTGenDefaultSet.

2 Set each property with BestXRTGenSet to the appropriate value.

To get the value of one property, use BestXRTGenGet.

Host

Preparat ion: ...Get() and ...Set() funct ions

Split Condit ion Decoder

Generic
Propert ies

Block
Propert ies

Conf ig Space

Behavior
Propert ies

BestXRTGenDefaultSet

BestXRTGenSet

BestXRTGenGet
62 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Requester-Target Device Programming the Exerciser
Example for Programming Generic Requester-Target
Properties

Task Program that three behaviors (0 … 2) are executed before the first one is
used again.

Implementation BX_TRY(BestXRTGenDefaultSet(handle));
BX_TRY(BestXRTGenSet(handle, BX_RTGEN_NUMBEH, 3));

Programming a Split Completion Decoder
To program the split completion decoder, you have to:

• Select the requester-target decoder.

• Specify the decoder size.

• Enable or disable the decoder.

This can be done with function BestXTDecoderSet.

Example /* Enable the split completion decoder */

BX_TRY(BestXTDecoderSet(handle, BX_DEC_RT, BX_DECP_SIZE, 1));

Programming the Requester-Target
Behavior
Each completer-initiator behavior has the following programmable
properties.

• Decode speed A or B (BX_RTBEH_DECSPEED)

NOTE Decode speed A is only supported up to 66 MHz.

• Accept 64-bit wide data transfer (BX_RTBEH_ACK64)

With this attribute, the target signals that it is capable of accepting
64-bit accesses:

– 1: Assert the ACK64# signal

– 0: Don’t assert the ACK64# signal

• Initial target response (BX_RTBEH_INITIAL)

This property defines how the completer-target responds after waiting
the number of cycles specified under Latency.

• Number of initial latencies (BX_RTBEH_LATENCY)

This property defines the number of wait cycles. Valid values are
3 … 34.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 63

Programming the Exerciser Programming the Exerciser as a Requester-Target Device
• Subsequent target response (BX_RTBEH_SUBSEQ)

This property specifies the target response in subsequent data phases.
It comes only into effect if the corresponding BX_RTBEH_INITIAL
completer-target behavior was set to BX_RTBEH_INITIAL_ACCEPT.

• Subsequent data phases (BX_RTBEH_SUBSEQPHASE)

If the value of behavior BX_RTBEH_SUBSEQ is set to
BX_RTBEH_SUBSEQ_DISCONNECT, this property defines the subsequent data
phase. Valid values are 0 … 2047.

• Number of repeats (BX_RTBEH_REPEAT)

The current behavior is repeated N times before the next behavior is
used. Valid values are 1 … 65536.

How to Program the Requester-Target Behavior
To program the requester-target behavior:

1 Set all entries of the requester-target behavior memory to default
values.

Use BestXRTBehDefaultSet.

2 Program each behavior to one line of the requester-target behavior
memory. Each behavior is specified by several behavior properties.

For each behavior property to be programmed, use BestXRTBehSet.

To query the value of a requester-target behavior property, use
BestXRTBehGet.

3 Define how many behaviors should be executed.

– First, set all generic requester-target properties to default values
with BestXRTGenDefaultSet.

– Then, use BestXRTGenSet and set the requester-target generic
property BX_RTGEN_NUMBEH to the appropriate value (1 … 256).

For more information about generic completer-target properties, see
“Programming Generic Requester-Target Properties” on page 61.

4 Define how often the current behavior is applied before the next
behavior is used.

Use BestXRTBehSet and set the requester-target generic property
BX_RTBEH_REPEAT to the appropriate value. Valid values are 1 … 65536.
64 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Exerciser as a Requester-Target Device Programming the Exerciser
The following figure shows the memory design, the available functions to
program the requester-target behavior memory, and the execution order.

5 Download all exerciser settings and properties to the hardware with
BestXExerciserProg.

Example for Programming the Requester-Target
Behavior

Task Perform the following task:

• Set up the requester-target so that it uses decode speed A, B and C.

• Signal RETRY, then accept the transfer. Initial latency should be 12.

Implementation / * Program generic requester-target properties */
BX_TRY(BestXRTGenDefaultSet(handle));

BX_TRY(BestXRTGenSet(handle, BX_RTGEN_NUMBEH, 3));

/* Program the behavior properties decode speed and initial to
behavior memory line 0 */

BX_TRY(BestXRTBehDefaultSet(handle, 0));

BX_TRY(BestXRTBehSet(handle, 0,BX_RTBEH_DECSPEED,
BX_RTBEH_DECSPEED_A));

BX_TRY(BestXRTBehSet(handle, 0,BX_RTBEH_INITIAL,
BX_RTBEH_INITIAL_RETRY));

RT behavior entry #0

RT behavior entry #1

RT behavior entry #2

…

RT behavior entry #255

BX_RTGEN_NUMBEH = = 3

BestXRTBehSet (handle, 2, BX_RTBEH_ACK64, 1)

BestXRTBehGet(handle, 0, BX_RTBEH_ACK64, &v)

Execution Programming

BestXRTBehDefaultSet (handle, 2)

Power Up or
Exerciser Prog

0

1

2

…

255
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 65

Programming the Exerciser Programming the Exerciser as a Requester-Target Device
/* Program the behavior properties decode speed, initial and
latency to behavior memory line 1 */

BX_TRY(BestXRTBehDefaultSet(handle, 1));

BX_TRY(BestXRTBehSet(handle, 1,BX_RTBEH_DECSPEED,
BX_RTBEH_DECSPEED_B));

BX_TRY(BestXRTBehSet(handle, 1,BX_RTBEH_INITIAL,
BX_RTBEH_INITIAL_ACCEPT));

BX_TRY(BestXRTBehSet(handle, 1,BX_RTBEH_LATENCY, 12));

/* Program the behavior properties decode speed, initial and
latency to behavior memory line 2 */

BX_TRY(BestXRTBehDefaultSet(handle, 2));

BX_TRY(BestXRTBehSet(handle, 2,BX_RTBEH_DECSPEED,
BX_RTBEH_DECSPEED_B));

BX_TRY(BestXRTBehSet(handle, 2,BX_RTBEH_INITIAL,
BX_RTBEH_INITIAL_ACCEPT));

BX_TRY(BestXRTBehSet(handle, 2,BX_RTBEH_LATENCY, 12));

/* Download the settings to the testcard and run the exerciser */

BX_TRY(BestXExerciserProg(handle));
BX_TRY(BestXExerciserRun(handle));
66 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Controlling the Exerciser Programming the Exerciser
Controlling the Exerciser

To control the generic behavior of the exerciser, you can program:

• The transaction scheduler

The transaction scheduler controls how the exerciser schedules block
transfers and split completions. See “Scheduling Block Transfers and

Split Completions” on page 68 for more information.

• The data generator

The onboard data generator can be used to supply data patterns as an
alternative to the data memory. See “Programming the Data

Generator” on page 73 for more information.

• The injection of errors

Errors, such as wrong parity, PERR or SERR, can be injected in
different phases of different resources. See “Programming Errors

Injection” on page 76 for more information.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 67

Programming the Exerciser Controlling the Exerciser
Scheduling Block Transfers and Split
Completions
For scheduling block transfers (requester-initiator transactions) and split
completions (completer-inititator transactions), the software provides
the following arbitration algorithms. The respective property values are
given in parentheses.

• Automatical arbitration (BX_EGEN_ARB_AUTO)

The internal arbiter selects requester-initiator and split completion
transactions one after the other. Empty queues are skipped.

Select one RI transact ion

Select one CI transact ion

RI queue
empty ?

No

CI queue
empty ?

Yes

No

Start

Yes
68 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Controlling the Exerciser Programming the Exerciser
• Constant arbitration (BX_EGEN_ARB_CONST)

NOTE Before you set this value, you can previously define a fixed number for
requester-initiator and split completion transactions by setting values
for BX_EGEN_ARB_RI and BX_EGEN_ARB_CI. Valid values are:
1(default) … 254.

The arbiter first selects the defined number of requester-initiator
transactions, then it selects the defined number of split completion
transactions, then the fixed number of requester-initiator transactions
again, and so on.

Start

BX_EGEN_ARB_RI
t imes

Select one RI
transact ion

BX_EGEN_ARB_CI
t imes

Select one CI
transact ion
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 69

Programming the Exerciser Controlling the Exerciser
• Incremental arbitration (BX_EGEN_ARB_INCREMENT)

NOTE Before you set this value, you can previously define a fixed number for
requester-initiator and split completion transactions by setting values
for BX_EGEN_ARB_RI and BX_EGEN_ARB_CI. Valid values are:
1(default) … 254.

The arbiter first selects the defined number of requester-initiator
transactions, then it selects the defined number of split completion
transactions. If any queue is empty, the arbiter waits 217 clocks before
choosing the other queue. After one cycle, the values for
BX_EGEN_ARB_RI and BX_EGEN_ARB_CI are incremented by one. After
incrementing up to 255, the value is set to 1.

Start

BX_EGEN_ARB_RI
t imes

Select one RI
transact ion. If queue
is empty, wait 2 17

clocks, then skip

BX_EGEN_ARB_CI
t imes

Select one CI
transact ion. If queue
is empty, wait 2 17

clocks, then skip

Increment
BX_EGEN_ARB_RI and

BX_EGEN_ARB_CI. If value
is > 255 set value to 1
70 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Controlling the Exerciser Programming the Exerciser
• Random arbitration (BX_EGEN_ARB_RANDOM)

For each cycle, the software selects random numbers for
BX_EGEN_ARB_RI and BX_EGEN_ARB_CI in the range 1 … 31.

For each cycle, the arbiter first selects the random number of
requester-initiator transactions, then it selects the random number of
split completion transactions. If any queue is empty, the arbiter waits
217 clocks before choosing the other queue.

Start

BX_EGEN_ARB_RI
t imes

Select one RI
transact ion. If queue
is empty, wait 2 17

clocks, then skip

BX_EGEN_ARB_CI
t imes

Select one CI
transact ion. If queue
is empty, wait 2 17

clocks, then skip

Set BX_EGEN_ARB_RI and
BX_EGEN_ARB_CI to a

random number in the range
1 .. 31
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 71

Programming the Exerciser Controlling the Exerciser
How to Schedule Block Transfers and Split Completions
To schedule block transfers and split completions, you have to set the
arbiter property.

Programming Steps To set the arbiter property values on the host:

1 Set all exerciser generic properties to default values with
BestXExerciserGenDefaultSet.

2 Regarding the algorithm you want to program, you can first define
fixed values for the number of requester-initiator and
completer-initiator transactions by setting BX_EGEN_ARB_RI and
BX_EGEN_ARB_CI with BestXExerciserGenSet.

This only has an effect when programming the constant or the
incremental algorithm.

3 Program the algorithm by setting the BX_EGEN_ARB property with
BestXExerciserGenSet to the appropriate value.

For appropriate values, see “Scheduling Block Transfers and Split

Completions” on page 68.

To get the value of one property, use BestXExerciserGenGet.

4 Write the property to the testcard with the BestXExerciserProg.

Example for Scheduling Block Transfers and Split
Completions

Task Program the internal arbiter, so that the number of requester-initiator
and split completion transactions executed sequentially are incremented
with each cycle. Set the number of requester-initiator and completer-
initiator transactions to 5.

Implementation /* Program the Exerciser generic properties */

BX_TRY(BestXExerciserGenSet(handle, BX_EGEN_ARB_RI, 5));
BX_TRY(BestXExerciserGenSet(handle, BX_EGEN_ARB_CI, 5));
BX_TRY(BestXExerciserGenSet(handle, BX_EGEN_ARB, BX_EGEN_ARB_INCR));

BX_TRY(BestXExerciserProg(handle));
72 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Controlling the Exerciser Programming the Exerciser
Programming the Data Generator
Data Generator Features You can use the onboard data generator to supply data as an alternative

to using the data memory. The data generator has the following features:

• It allows the testcard to deliver fast data patterns without initial
latencies.

• It generates unique data patterns (up to 221 DWORDs) that allow you
to deterministically link a certain address to a certain data pattern.
This feature allows you a unidirectional data path verification. For
more information about the unidirectional data path verification,
please refer to Agilent E2929A/B Opt. 300 PCI-X Exerciser User’s

Guide.

Furthermore, the data generator provides:

• 21-bit width of unique data. The data itself is 64 bits wide.

• A programmable start value that can be used to generate unique data
patterns.

• That the data pattern can be changed with every data phase.

Data Generator Properties You can program the following data patterns. The respective properties
are given in parentheses.

• Count-up data pattern (unique data) (BX_EGEN_DATAGEN_COUNTER)

To generate a count-up data pattern, you also have to specify an offset
to the bus address (BX_EGEN_DATASEED). Valid values are 0 … (220 - 1).

The counter creates a 64-bit wide data pattern, consisting of two count
values from bit 0 … 22 and from bit 32 … 54. The remaining 18 bits can
be preset with an arbitrary value or the identification to enable an easy
identifier for any seen data in the system.

If the counter is programmed with an initiator identification
(BX_EGEN_DATAFIX_MASTERID), the data compare (BX_EGEN_PARTCOMP) can
be switched off for the 18 fixed bits to still allow unidirectional data
verification.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 73

Programming the Exerciser Controlling the Exerciser
The bit assignment of the data generator is as follows:

• Generating walking ones or zeros (BX_EGEN_DATAGEN_WALKING1,
BX_EGEN_DATAGEN_WALKING0)

• Generating a pseudo-random pattern (unique data)
(BX_EGEN_DATAGEN_COUNTMIX)

To generate a pseudo-random pattern, you also have to specify an
offset to the bus address (BX_EGEN_DATASEED). Valid values are
0 … (220 - 1).

The generated data is a 64-bit wide pattern that changes with a period
of 221 and appears as a pseudo-random sequence.

• Generating a ground bounce pattern (BX_EGEN_DATAGEN_GROUNDBOUNCE)

Generate data where 0x00000000 and 0xffffffff patterns alternate.

NOTE This pattern can be used for unidirectional data path verification. For
more information, please refer to Agilent E2929A/B Opt. 300 PCI-X

Exerciser User’s Guide.

Fixed
Counter or

Random
100 Fixed

Counter or
Random

000
Program value with
BX_EGEN_DATAFIX

55 54 35 34 32 31 23 22 3 2 0

9 bit 20 bit 3 bit 9 bit 20 bit 3 bit

walking 1, walking 0, or ground bounce

64 bit

BX_EGEN_DATAGEN_WALKING1, BX_EGEN_DATAGEN_WALKING0 or
BX_EGEN_DATAGEN_GROUNDBOUNCE

63

63 0
74 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Controlling the Exerciser Programming the Exerciser
How to Program the Data Generator

Programming Steps To program the data generator, you have to perform the following steps:

1 Ensure that the data generator was defined as data source for
requester-initiator block transfers or the target decoder. To program
this, see “How to Program Block Transfers” on page 31 and “How to

Program a Decoder” on page 43.

2 Set the whole exerciser generic properties to default values with
BestXExerciserGenDefaultSet.

3 Regarding the pattern you want to program, you can define a fixed
value for the data generator or an initiator ID. Set BX_EGEN_DATAFIX to a
18-bit value or to BX_EGEN_DATAFIX_MASTERID with
BestXExerciserGenSet.

This only has an effect when programming the counter pattern and the
pseudo random pattern.

4 Program the pattern by setting the BX_EGEN_DATAGEN property with
BestXExerciserGenSet to the appropriate value.

For valid values, see “Programming the Data Generator” on page 73.

To get the value of one property, use BestXExerciserGenGet.

5 Write the settings to the testcard with the BestXExerciserProg.

Example for Programming the Data Generator

Task Program the data generator to use the walking 0 datapattern.

Implementation BestXExerciserGenSet(handle, BX_EGEN_DATAGEN,
BX_EGEN_DATAGEN_WALKING0);
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 75

Programming the Exerciser Controlling the Exerciser
Programming Errors Injection
Programming errors takes place in the following steps.

1. Specifying the resource from where the error is injected.

2. Specifying the exact location within that resource.

3. Specifying the type of error.

4. Specifying the phase in which the exceptions are generated.

Restrictions on Errors Injection Errors injection is subject to the following restrictions:

• The injection of wrong parity (32/64) will not occur under the
following conditions:

– For any device acting as a receiver of data. This is normal behavior
because it is the device driving the bus that is responsible for
generating and drive parity, not the receiver. That is why address
phase parity generation works but not data phase parity generation.

– On all write commands in first data phase with target decode
speed A and zero initial waits.

• The injection of wrong PERR will not occur:

– For any device acting as a sender of data. This is normal behavior
because it is the device that receives the data that is responsible for
asserting PERR.

– During/due to an address phase or attribute phase. See PCI-X
specification section 5.4.3.

• Attribute phase error injection is not supported.
76 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Controlling the Exerciser Programming the Exerciser
Table of Supported Actions The following table lists all actions supported by the software:

NOTE Yes means that this error can be injected.

No means that this error cannot be injected.

BX_EGEN_
ERR_SOURCE

BX_EGEN_
ERR_PHASE

BX_EGEN_ERR_
WRPAR

BX_EGEN_ERR_
WRPAR64 BX_EGEN_ERR_PERR BX_EGEN_ERR_SERR

RI Block Addr Yes Yes No Yes

Attr No No No No

Data read No No Yes
(PERR is only
generated by data
receivers.)

Yes

Data write Yes
(PAR is only generated
by data senders.)

Yes
(PAR64 is only
generated by data
senders.)

No No

RI Behavior Addr Yes Yes No Yes
(Does not appear to
observe specified
behavior line. Occurs
on every transfer.)

Attr No No No No

Data read No No Yes Yes

Data write Yes Yes No Yes

CT Behavior Addr No
(The RI is responsible
for generating parity.)

No
(The RI is responsible
for generating parity.)

No Yes

Attr No No No No

Data read Yes
(Only on data phase 1.)

Yes
(Only on data phase 1.)

Yes
(Only on data phase 1.)

Yes
(Only on data phase 1.)Data write

CI Behavior Addr Yes
(With mem read from
RI.)

Yes
(With mem read from
RI.)

No Yes
(3 clocks after address
phase.)

Attr No No No No

Data read Yes Yes No
(The CI is always the
data sender, and
senders do not
generate PERR.)

Yes
(3 clocks after data
phase.)

Data write
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 77

Programming the Exerciser Controlling the Exerciser
How to Program Errors Injection

Programming Steps To program the data generator, you have to perform the following steps:

1 Set the whole exerciser generic properties to default values with
BestXExerciserGenDefaultSet.

2 Specify whether and from which resource an error is injected by
setting BX_EGEN_ERR_SOURCE with BestXExerciserGenSet to the
appropriate value.

Valid values are:

– Requester-initiator block memory (BX_EGEN_SOURCE_RIBLK)

– Requester-initiator behavior memory (BX_EGEN_SOURCE_RIBEH)

– Completer-target behavior memory (BX_EGEN_SOURCE_CTBEH)

– Decoder address range (BX_EGEN_SOURCE_DEC)

– Completer-initiator behavior memory (BX_EGEN_SOURCE_CIBEH)

– Requester-target behavior memory (BX_EGEN_SOURCE_RTBEH)

RT Behavior Addr No
(The CI is responsible
for generating parity.)

No
(The CI is responsible
for generating parity.)

No Yes
(Also puts SERR when
RI is active.)

Attr No

(The CI is responsible
for generating parity.)

No

(The CI is responsible
for generating parity.)

No No

Data read No
(The RT is always the
data receiver, and
receivers do not
generate PAR/PAR64.)

No
(The RT is always the
data receiver, and
receivers do not
generate PAR/PAR64.)

Yes
(3 clocks after the
specified data phase.)

Yes
(2 clocks after the
specified data phase.)

Data write

Decoder Addr No
(The decoder has not
yet claimed the
transaction.)

No
(The decoder has not
yet claimed the
transaction.)

No
(The decoder has not
yet claimed the
transaction.)

No

Attr

Data read Yes Yes Yes Yes

Data write

BX_EGEN_
ERR_SOURCE

BX_EGEN_
ERR_PHASE

BX_EGEN_ERR_
WRPAR

BX_EGEN_ERR_
WRPAR64 BX_EGEN_ERR_PERR BX_EGEN_ERR_SERR
78 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Controlling the Exerciser Programming the Exerciser
3 Specify the exact location within the selected resource by setting
BX_EGEN_ERR_NUM with BestXExerciserGenSet to the appropriate value.
The valid value depends on the selected resource.

The exact location depends on the selected resource. Please refer to
Agilent E2929A/B Opt.320 C-API/PPR Programming Reference or
Agilent E2922A/B Opt.320 C-API/PPR Programming Reference for
more information.

To get the current value of the property, use BestXExerciserGenGet.

4 Specify the type of error to be injected.

Use BestXExerciserGenSet and set the following properties:

– BX_EGEN_ERR_WRPAR (Wrong parity (PAR))

0: Parity is generated correctly; 1: Parity is inverted.

– BX_EGEN_ERR_WRPAR64 (Wrong parity, 64-bit (PAR64))

0: Parity is generated correctly; 1: Parity is inverted.

– BX_EGEN_ERR_PERR (Parity error (PERR))

0: PERR is not asserted; 1: PERR# is asserted..

– BX_EGEN_ERR_SERR (System error (SERR))

0: SERR is not asserted; 1: SERR# is asserted.

To get the current value of the property, use BestXExerciserGenGet.

5 Specify in which phase (address or attribute) the possible exceptions
are generated.

Use and set BX_EGEN_ERR_PHASE to:

– BX_EGEN_ERR_PHASE_ADDR (address phase)

– BX_EGEN_ERR_PHASE_ATTR (attribute phase)

– 1 … 512 (1024 in 32 bit systems) (data phase)

To get the current value of the property, use BestXExerciserGenGet.

6 Write the settings to the testcard with BestXExerciserProg.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 79

Programming the Exerciser Programming the Expansion ROM
Example for Programming Errors Injection

Task Set up the E2929A so that it generates wrong parity on the 32-bit lines
during the attribute phase of block transfer #2.

Implementation BX_TRY(BestXExerciserGenSet(handle, BX_EGEN_ERR_SOURCE,
BX_EGEN_ERR_SOURCE_RIBLK));

X_TRY(BestXExerciserGenSet(handle, BX_EGEN_ERR_NUM, 1));

BX_TRY(BestXExerciserGenSet(handle, BX_EGEN_ERR_PHASE,
BX_EGEN_ERR_PHASE_ATTR));

BX_TRY(BestXExerciserGenSet(handle, BX_EGEN_ERR_WRPAR, 1));

BX_TRY(BestXExerciserProg(handle));

Programming the Expansion
ROM

The expansion ROM is typically used as boot ROM and can contain a
power-on-self-test, BIOS and interrupt service routines.

The expansion ROM of the testcard features “code-in-place execution”
(XIP) (instead of copying the expansion ROM content into system
memory for execution). This is beyond PCI-X specification, but can be
used in a system in which system memory does not yet work.

The expansion ROM of the testcard is accessible:

• By means of C-API functions to fill and read the expansion ROM
contents:

– To fill the expansion ROM content, use BestXExpRomWrite.

– To read the expansion ROM content, use BestXExpRomRead.

• Through a memory range defined in the “expansion ROM base address
register” in the testcard’s configuration space.
80 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Data Memory Programming the Exerciser
Programming the Data Memory

To read and to fill the data memory of the testcard with compare data
and data to send, you need to access the testcard’s data memory from
your control PC.

Data Alignment The testcard provides a 1-MB (128K × 2 dwords) programmable
read/write data memory. For usability reasons, when transferring data
between the PCI-X bus under test and the data memory, the data must be
aligned with respect to the PCI-X bus width and the width of data
transfer (32-bit or 64-bit).

The following figure illustrates how data that is stored in the data
memory is driven onto the PCI-X bus and how received data is stored
(for 64-bit and 32-bit data transfer).

DataMemory

1 2
3 4

9 10
7 8
5 6

1 2
3 4

9 10
7 8
5 6

64-Bit Transfer

DataMemory

1 2
3 4

9 10
7 8
5 6

1
2

5
4
3

6
7

10

8
9

32-Bit Transfer
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 81

Programming the Exerciser Programming the Data Memory
To align the data correctly for data transfers to or from the PCI-X bus,
follow these rules:

• For 64-bit transfers:

The specified byte addresses must be 64-bit aligned. For both the
internal address and the PCI-X bus addresses, the least significant
three bits must be 0.

• For 32-bit transfers:

The specified byte addresses must be 32-bit aligned. For both the
internal address and the PCI-X bus addresses, the least significant two

bits must be 0. The third bit of the internal and external address must
be equal.

Initiator and Target Partitions Basically, you are free to use any part of the data memory for the initiator
and the target. However, if you need to use the data memory as a
resource for all devices at the same time, it is recommended to define
memory partitions.

This can be done by using different internal addresses for the initiator
and the target. This applies to the following parameters:

• For the initiator:

The block properties BX_RIBLK_INTADDR and BX_RIBLK_NUMBYTES must be
set appropriately.

• For the target:

When you set the BX_DECP_RESOURCE property to BX_DECP_RESOURCE_MEM
(data memory) or data compare is switched on (you set the
BX_DECP_COMPARE property to 1), the properties BX_DECP_RESBASE
address and BX_DECP_RESSIZE must be set appropriately.

NOTE If the initiator of the testcard is communicating with its own target via
the PCI-X bus, the target has no access to the data memory. When the
initiator performs write commands, the target cannot store data in the
data memory.
82 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Data Memory Programming the Exerciser
How to Program the Data Memory
The following figure shows functions used to program the data memory.

Programming Steps Programming the data memory requires the following steps:

� Perform data transfer to and from the internal data memory.

– To write data to the internal data memory of the testcard via the
control interface, the control PC runs the C program and can be
used to generate the data to be written.

Use BestXDataMemWrite.

– To read data from the testcard, the same method is used in reverse.

Use BestXDataMemRead.

Example for Programming the Data Memory
Task Read a memory block of 32 Kbyte (0x8000) from the data memory of the

testcard, beginning with internal address 0x0000, to the control PC
memory (specified by buffer).

Implementation bx_int8 buffer[32*1024];

...

BX_TRY(BestXDataMemInit(handle));
BX_TRY(BestXDataMemRead(handle, 0x0000, 0x8000, buffer));

Control-PC

SystemUnder Test
µP

Host
Bridge

PCI-XBus

Testcard

BIOS

BestXDataMemRead()

BestXDataMemWrite()

PCI-X/PCI-X

Bridge

Device Under
Test

PCI-XBus

System
Memory
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 83

Programming the Exerciser Programming Data Transfer To and From the Host
Programming Data Transfer To
and From the Host

The testcard provides host access functions to access the registers of a
PCI-X device. These functions allow you to access the memory, I/O and
configuration space of a device.

Reading Data To read the value from a specific PCI-X device register in a 32-bit address
space to the control PC, use BestXHostPCIRegRead.

The bus address is a byte address. This function performs single-cycle
transactions and sets automatically the correct byte enables
corresponding to the word size and bus address.

Writing Data To write the value from the control PC to a specific PCI-X device register
in a 32-bit address space, use BestXHostPCIRegWrite.

The bus address is a byte address. This function performs single-cycle
transactions and sets automatically the correct byte enables
corresponding to the word size and bus address.

Example for Host Access
Task Transfer a dword from a register in a PCI-X device at the physical

memory address 0x8000 to the control PC.

Implementation BX_TRY(BestXHostPCIRegRead(handle, BX_ADDRSPACE_MEM, 0x8000,
BX_SIZE_DWORD));
84 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming PCI-X Interrupts Programming the Exerciser
Programming PCI-X Interrupts

The testcard can generate any PCI-X interrupt INTA# ... INTD#.
Programming interrupts queries the following steps:

1. The interrupts must be generated.

2. The interrupt status has to be queried.

3. After the interrupt status has been queried, the interrupts must be
cleared.

It is necessary to be able to generate interrupts, for example, when
developing interrupt drivers for a PCI-X device.

How to Generate PCI-X Interrupts
To program an interrupt:

1 Generate an PCI-X interrupt INTA# ... INTD# with
BestXInterruptGenerate.

– or –

Generate an interrupt via the hardware if a certain requester-initiator
block or requester-target behavior line is executed or if a certain
decoder is accessed.

The following figure shows the sources and when the interrupt is
asserted.

– Specify the source for the interrupt.

Use BestXExerciserGenSet and set the generic exerciser property
BX_EGEN_INT_SOURCE to the required value (none, RIBLK, RTBEH, or
decoder).

– Specify the exact location within the source.

Use BestXExerciserGenSet and set the generic exerciser property
BX_EGEN_INT_NUM to the required value (Position in RIBLK or RTBEH
memory or decoder number (0 .. 8)).

Interrupt Source canbe:

RI Block line 1.. BX_RIGEN_NUMBLK

or

RTbehavior line 1.. BX_RTGEN_NUMBEH

or
Decoder 0.. 8

INTA:
assert in1 .. 65535clock cyclesor don't assert

assert in1 .. 65535clock cyclesor don't assert

assert in1 .. 65535clock cyclesor don't assert

assert in1 .. 65535clock cyclesor don't assert

INTB:

INTC:

INTD:
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 85

Programming the Exerciser Programming PCI-X Interrupts
– Specify the delay in clock cycles for INTA … INTD after the event
that triggers the interrupt has occurred.

Use BestXExerciserGenSet and set the generic exerciser properties
BX_EGEN_INT_DELAYA … BX_EGEN_INT_DELAYD to the required values
(BX_EGEN_INT_DELAY_NO or 1 … 65535).

2 Write the exerciser generic properties to the testcard with
BestXExerciserProg.

3 Query the interrupt status.

Use BestXStatusRead.

Refer to bx_statustype in the Agilent E2929A/B or E2922A/B Opt.

320 C-API/PPR Programming Reference to see the properties and
values to be get.

4 Clear the interrupt.

Use BestXStatusClear.

Refer to bx_statustype in the Agilent E2929A/B or E2922A/B Opt.

320 C-API/PPR Programming Reference to see the properties to be
cleared.

Interrupt Status Register
The interrupt status register is located in the private section of the
testcard’s configuration space. It can be read, for example, by interrupt
drivers to determine whether the testcard has generated an interrupt.

The offset within the configuration space is 0x51. The bits of interrupt
status register are explained in the table below.

Bit Oper. Value Meaning

0 Interrupt A pending.

Read 0 No interrupt pending.

1 An interrupt has been generated by the testcard and is wait-
ing to be serviced.

Write 1 The appropriate interrupt is cleared.

1 Interrupt B pending. (Read/write operation, value, meaning see interrupt A.)

2 Interrupt C pending. (Read/write operation, value, meaning see interrupt A.)

3 Interrupt D pending. (Read/write operation, value, meaning see interrupt A.)
86 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming PCI-X Interrupts Programming the Exerciser
Example for Programming PCI-X Interrupts
Task Program the following:

• Let the E2929A assert INTB 200 clock cycles after block transfer #1
was started.

• Query the interrupt after BestXExerciserRun.

• After that, clear the interrupt.

Implementation #include <xpciapi.h>

int main(int argc, char* argv[])
{

BX_TRY_VARS_NO_PROG;

/* additional local variable declarations here */
bx_handletype handle;

BX_TRY_BEGIN

{

BX_TRY(BestXOpen(&handle, BX_PORT_RS232, BX_PORT_COM1));
BX_TRY(BestXRS232BaudRateSet(handle, BX_BD_57600));
BX_TRY(SetupForInterrupt(handle));

/* Specify the source for the interrupt */

BX_TRY(BestXExerciserGenSet(handle, BX_EGEN_INT_SOURCE,
BX_EGEN_INT_SOURCE_RIBLK));

/* Specify the location within the source */

BX_TRY(BestXExerciserGenSet(handle, BX_EGEN_INT_NUM, 1));

/* Specify the delay the interrupt is asserted within the
source */

BX_TRY(BestXExerciserGenSet(handle,BX_EGEN_INT_DELAYB,200));

/* Write the settings to the testcard and run the exerciser*/

BX_TRY(BestXExerciserProg(handle));
BX_TRY(BestXExerciserRun(handle));

/* Query the interrupt */

bx_int32 val;
BX_TRY(BestXStatusRead(handle, BX_STAT_INTB, &val));
printf("the value of the number.. before %d\n",val);
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 87

Programming the Exerciser Programming PCI-X Interrupts
/* Clear the interrupt */

BX_TRY(BestXStatusClear(handle, BX_STAT_INTB));
BX_TRY(BestXStatusRead(handle, BX_STAT_INTB, &val));

printf("the value of the number.. after %d\n",val);
BX_TRY(BestXClose(handle));

}

BX_TRY_CATCH
{

// cleanup, if necessary
printf("%s\n", BestXErrorStringGet(BX_TRY_RET));

}

BX_ERRETURN(BX_TRY_RET);
}

88 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Analyzer

The tasks of PCI-X analysis are to monitor the PCI-X bus, to detect
specific events, and to measure and evaluate the occurrences of signals
on the bus.

The following figure shows the components of the analyzer.

The following sections explain how to program the testcard’s analyzer to
fulfill the different tasks:

• “Programming the Protocol Observer” on page 90 explains how to
mask individual protocol rules and how to read the observer result
registers.

• “Programming Pattern Terms” on page 94 explains all types of
pattern terms, and how to use and program them.

AlignmentAlignment

AlignmentAlignment

PCI/PCI-X
BusObserver
PCI/PCI-X

BusObserver

Protocol
RuleChecker

Protocol
RuleChecker

Observer
PatternTerm

4ea .

Observer
PatternTerm

4 ea.

Bus
PatternTerm

2

Bus
PatternTerm

2ea.

Trigger
Sequencer
Trigger

Sequencer

Performance
Sequencer

2(4) .

Performance
Sequencer
2(4)ea.

Error
PatternTerm

Error
PatternTerm

RegisteredPCI SignalsEx
er

ci
se

rI
nf

o
TraceMemoryInterfaceTraceMemoryInterface

Hit
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 89

Programming the Analyzer Programming the Protocol Observer
• “Programming the Trigger Sequencer” on page 96 explains how to
program the sequencers.

Basically, all sequencers on the testcard work in the same manner.
There are many parameters controlling the sequencers. The principles
of the sequencers are explained, and an example of using the trace
memory trigger sequencer is provided.

• “Programming the Trace Memory” on page 104 explains how to use
the trace memory and how to program its sequencer and the storage
qualifier. Information about how to upload and evaluate the contents
of the trace memory is also provided.

• “Programming the Performance Sequencer” on page 111 explains
how to program the performance measures.

Programming the Protocol
Observer

The protocol observer monitors 53 different protocol rules
simultaneously. The protocol rules refer to PCI-X specification rules. An
“any error” output for triggering purposes is provided, as well as
registers to latch the first occurring errors and the accumulating
subsequent errors.

Error Register Contents The protocol observer provides two error registers containing:

• Bits for the protocol rule violations that have occurred first. Often the
first rule violations are the reason for subsequent rule violations.

Each individual rule can be masked from being detected as “first rule
violation”. This allows you to exclude certain rule violations from
triggering the analyzer.

• A flag bit for each rule violated during observation.
90 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Protocol Observer Programming the Analyzer
Error Register Design Both of the following registers hold a flag bit for each rule and, therefore,
consist of two registers each with a length of 32 bits.

The contents of the error registers can be read by means of the testcard
C-API, which converts them into a text string that describes the violated
rules.

Further Use A detected protocol violation can:

• Be used as input for pattern terms (see “Programming Pattern

Terms” on page 94).

• Trigger the trace memory (see “Programming the Trace Memory” on

page 104).

The rule violation(s) cause a “bus error”, which can be used as a
trigger signal. It is aligned to the first clock at which the error was
detected.

TIP This holds true except for parity errors: they are aligned to the transfer
cycle where the data does not match the PAR signal. A storage
qualifier can be used to store only the incorrect data phases.

How to Program the Protocol Observer
The testcard’s programming interface provides functions for
programming the protocol observer.

Programming Steps Programming the protocol observer requires the following steps:

1 Check if the protocol observer has detected a protocol error by
reading the card status (BX_STAT_OBS_ERR) with BestXStatusRead.

2 If an protocol error has occurred (observer status = 1), reading a text
string containing all errors that were found in the first error register
and the accumulated error registers.

Use BestXObsStatusRead.

Accumulated Errors 2 Accumulated Errors

First ErrorFirst Error 2

0313263

0313263

Bit Position:

Bit Position:
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 91

Programming the Analyzer Programming the Protocol Observer
With the Agilent E2929A/B testcard, you can trigger on particular PCI-X
protocol errors and view the captured waveforms. To perform this:

1 Optionally, mask out all rules that you are not interested in.

Use BestXObsMaskProg.

2 Program an observer pattern term.

See “How to Program Pattern Terms” on page 94.

3 Program the trigger sequencer.

See “How to Program the Trigger Sequencer” on page 99.

4 View the captured waveforms.

See “How to Program the Trace Memory” on page 105.
92 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Protocol Observer Programming the Analyzer
Example for Programming the Protocol
Observer

Task Read the occurred protocol rule violations.

Implementation #include "stdafx.h"
#include <xpciapi.h>
#include "SetupUtil.h"

int main(int argc, char* argv[])
{

BX_TRY_VARS_NO_PROG;

/* additional local variable declarations, here */
bx_handletype handle;
BX_TRY_BEGIN
{

/* Open the connection to the card */
BX_TRY(BestXOpen(&handle, BX_PORT_RS232, BX_PORT_COM2));
BX_TRY(BestXRS232BaudRateSet(handle, BX_BD_57600));
printf("Opened the connection on the card\n");

bx_int32 erroroccured;

/* Query if any protocol errors occurred */

BX_TRY(BestXStatusRead(handle, BX_STAT_OBS_ERR,
&erroroccured));

if (erroroccured == 0)
{

printf("No protocol errors were detected\n");
}
else
{

printf("PROTOCOL ERROR HAS OCCURRED\n");

/* Print the text string of all errors that occurred */
bx_charptrtype errortext;
BX_TRY(BestXObsStatusRead(handle, &errortext));

printf("The status is %s\n", errortext);
}
BX_TRY(BestXClose(handle));
printf("Closed the connection to the card\n");

}
BX_TRY_CATCH
{
/* cleanup, if necessary */
printf("%s\n", BestXErrorStringGet(BX_TRY_RET));
}
return 0;

}

Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 93

Programming the Analyzer Programming Pattern Terms
Programming Pattern Terms

The pattern terms are programmed using logical equations that define
the pattern to be recognized. Each pattern term is identified by its
pattern term identifier. For a list of valid pattern term identifiers, see
“bx_patttype” in the Agilent E2929A/B Opt. 320 C-API/PPR Reference.

The pattern terms are programmed by means of signals and logical
operators.

Using Pattern Terms The pattern terms (also known as pattern recognizers) compare bus
states with programmable conditions. Their output (1 = pattern found,
0 = pattern not found) can be used:

• As input for sequencers, for example, the trace memory trigger
sequencer (see “Programming the Trigger Sequencer” on page 96).

• For storage qualification for the trace memory (see “Programming

the Trace Memory” on page 104).

• When counting bus events for performance analysis (see
“Programming the Performance Sequencer” on page 111).

• For requester-initiator conditional start based on the detection of a
specific event on the PCI-X bus.

As input, the pattern terms can use all the signals specified in
“bx_signaltype” in the Agilent E2929A/B Opt. 320 C-API/PPR

Reference.

On the testcard, the following pattern terms are implemented:

• Two bus pattern terms (bus0, bus1)

• Four observer patterns terms (obs0 … obs3)

• One error pattern term (err0)

• Two conditional pattern terms (cond0, cond1)

How to Program Pattern Terms
Programming Steps To specify a pattern term, use BestXPattProg.

This pattern term can be used in the condition strings of a sequencer
description table.
94 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming Pattern Terms Programming the Analyzer
Example for Programming Pattern Terms
Task Program the following two patterns:

• Program bus pattern (bus0) to detect an address phase that addresses
the range 10003000\h … 10003fff\h.

• Program an observer pattern to detect an active bus state.

Implementation /* Program the bus pattern */

BX_TRY(BestXPattProg(handle, BX_PATT_BUS0, "AD32==10003xxx\\h &&
addr_phase==1"));

/* Program the observer pattern. For bstate, the numeric value for
an active bus state is “1”. See “bx_signaltype” in the
Agilent E2929A/B Opt. 320 C-API/PPR Reference. */

BX_TRY(BestXPattProg(handle, BX_PATT_OBS0, "bstate == 1"));
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 95

Programming the Analyzer Programming the Trigger Sequencer
Programming the Trigger
Sequencer

The sequencers of the testcard detect bus state sequences. The
sequencers use programmable pattern terms to compare bus states with
programmable conditions.

The following figure shows the hardware components of the trigger
sequencer.

All sequencers provide an internal memory, state machine, and two 32-bit
feedback counters (A and B). The statemachine controls the operation of
the sequencer. The sequencer has 7 input registers. These registers can
be used for input from pattern terms and for state feedback from the
sequencer output. A maximum of 24= 16 states is the practical limit—
because at least one pattern term is always needed.

Sequencer Memory
128* 10

Sequencer Memory
128* 10

Feedback
Counter A
Feedback
Counter A

Feedback
Counter B
Feedback
Counter B

MUXMUX

Overflow

Overflow

7 State (4)

PatternTerms(7)

Load / Decrement

Load /Decrement

Trigger / Store
96 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Trigger Sequencer Programming the Analyzer
Setting up the Sequencer Setting up a sequencer requires the following steps:

1. Building a state diagram.

A sequence consists of states. The sequencer switches between these
states as defined by transition conditions. A state diagram is used to
design the sequence.

State diagrams show the transition conditions and the actions to be
performed upon transition (output conditions).

Example:

2. Programming the pattern terms.

This is described in “Programming Pattern Terms” on page 94.

3. Setting up and programming the sequencer description table.

The sequencer description table holds the transients. The transients
are programmed using C function calls (or CLI commands). The
sequencer description table can contain up to 128 transients.

The state diagram can easily be translated into a sequencer descrip-
tion table. Each transition (arrow) in the diagram requires a transient
(a row in the table). Each transient holds the following properties:

– State

State to which the transient is assigned (start of the arrow).

– Next state

State to which the sequencer should change if the transition
condition occurs (end of the arrow).

– Transition condition

If this condition is true, the sequencer switches to the “next state”.

– Feedback counters enable condition

Output conditions controlling the count operation of the feedback
counters (not used in this example).

0 1

In:obs1
Out:T=0; SQ=1

In: !obs1
Out:T=0; SQ=obs0

In: !bus0
Out:T=0; SQ=1

In:bus0
Out:T=0; SQ=1
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 97

Programming the Analyzer Programming the Trigger Sequencer
– Feedback counters preload conditions

Output conditions to set the feedback counters to its preload value
(not used in this example).

The trace memory trigger sequencer requires in particular:

– Trigger condition

Output condition controlling the trigger signal. The trigger signal
will only be set if this condition is true and if the transient is active.

– Storage qualifier condition

Output condition controlling data sampling (storage qualifier). If
this condition is true for a trace data line, this line will be stored to
trace memory. Otherwise, timestamp information will be stored at
the end of the gap (in normal gap mode).

Example:

The following table shows the sequencer description table from the
figure.

The sequencer starts in state 0. It observes the transition conditions
of the current state and performs the actions as defined for an active
transition. If no transition condition is true, the sequencer remains in
the current state and no action is taken.

NOTE When programming the sequencer description table, note the
following behavior of the feedback counter:

– Clock n: The sequencer instructs the counter to decrement.

– Clock n+1: The counter decrements to terminal count.

– Clock n+2: The terminal count input to sequencer is asserted.

NOTE If the preload condition occurs simultaneously with an
increment/decrement condition, the counter amount will be replaced
by the preload value, but not incremented or decremented (the
preload condition has priority over the count enables).

Transient No. Current State Next State
Transition
Condition

Trigger
Condition

Storage
Qualifier

0 0 0 !bus0 0 0

1 0 1 bus0 1 1

2 1 1 !obs0 - 1

3 1 0 obs0 - 1
98 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Trigger Sequencer Programming the Analyzer
How to Program the Trigger Sequencer
Programming Steps Programming the sequencer requires the following steps:

1 Initialize the entire trace memory trigger sequencer to a single-state
machine with BestXTrigDefaultSet.

This clears the memory.

2 Set the preload values of the feedback counters A and B.

Each sequencer is equipped with two preloadable feedback counters.
They can be decremented or loaded, enabling you to specify how often
a sequence must occur before an output signal is set. Their outputs
“tc_fba” and “tc_fbb” (terminal counts) becomes 1 if the counters
contain a value of 0xffffffff (–1).

Use BestXTrigGenDefaultSet and BestXTrigGenSet.

3 Set all properties in the trigger sequencer description table to default
values.

Use BestXTrigTranCondDefaultSet.

4 Set the numeric transition properties “Current State” and “Next State”.

NOTE All transition conditions of one state must be mutually exclusive. This
means that one and only one transition condition of a state can be true
at a time. Otherwise, the software will not accept the table because
the table does not uniquely define the sequencer’s behavior.

Use BestXTrigTranSet.

5 Set the conditions in the sequencer description table. Conditions can
be:

– transition condition

– trigger condition

– storage qualifier condition

– conditions to decrement and preload the feedback counters

All conditions are specified as logical expressions.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 99

Programming the Analyzer Programming the Trigger Sequencer
These expressions can either be set directly to true (1) or false (0), or
they can consist of pattern identifiers referring to pattern identifiers
(bus0, bus1, obs0 … obs3, err0, cond0, cond1) and the terminal count
(tc_fba and tc_fbb) of the feedback counters.

For conditions, please refer to “Conditions Reference” in the
Agilent E2929A/B Opt. 320 C-API/PPR Reference.

The programmable pattern terms are used by the sequencer to detect
bus state sequences. They compare bus states with programmable
conditions (for example, “b_state==3\h & AD32==b8xxx\h”).

If the programmed condition is true, the sequencer switches to the
“Next State”. Use BestXTrigCondSet for setting conditions.

6 Write the sequencer description table to the sequencer memory.

Use BestXTrigSeqProg.

Example for Programming the Trigger
Sequencer

Task The following sequence is to be detected:

• Wait for an address phase that addresses the range 10003000\h …
10003fff\h.

• When the address phase is detected, trigger and store all the transfers.

• Stop storing if an idle cycle occurs.

• Wait for the next access at the specified address.

Solution For this example, the following pattern terms are to be programmed:

– A bus pattern (bus0) to detect an address phase that addresses the
range 10003000\h … 10003fff\h.

– An observer pattern (obs0) to detect an active bus state.
100 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Trigger Sequencer Programming the Analyzer
The respective state diagram and sequencer description table look as
follows:

Implementation #include <xpciapi.h>
#include "SetupUtil.h"

int main(int argc, char* argv[])
{

BX_TRY_VARS_NO_PROG;

/* Additional local variable declarations here */

bx_handletype handle;
BX_TRY_BEGIN
{

BX_TRY(BestXOpen(&handle, BX_PORT_RS232, BX_PORT_COM1));
BX_TRY(BestXRS232BaudRateSet(handle, BX_BD_57600));

/* Insert here the C-API calls to set up the block transfer(s)*/

BX_TRY(BestXTraceStop(handle));

/* Program the bus pattern. See “bx_signaltype” in
the Agilent E2929A/B Opt. 320 C-API/PPR Reference.*/

BX_TRY(BestXPattProg(handle, BX_PATT_BUS0, "AD32==10003xxx\\h
&& addr_phase==1"));

0
waiting for
particular
address

1
waiting for

idle

In: !bus0
Out:T=0; SQ=0

In:bus0
Out:T=1; SQ=1

In:obs0
Out:SQ=1

In: !obs0
Out:SQ=1

Transition Current State Next State
Transaction
Condition

Trigger
Condition

Storage
Qualifier

0 0 0 !bus0 0 0

1 0 1 bus0 1 1

2 1 1 !obs0 - 1

3 1 0 0bs0 - 1
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 101

Programming the Analyzer Programming the Trigger Sequencer
/* Program the observer pattern. For bstate, the numeric
value for an active bus state is “1”. See “bx_signaltype” in
the Agilent E2929A/B Opt. 320 C-API/PPR Reference.*/

BX_TRY(BestXPattProg(handle, BX_PATT_OBS0, "bstate == 1"));

/* Initialize the entire trace memory trigger sequencer */
BX_TRY(BestXTrigDefaultSet(handle));

/* Set all properties of transitions 0 … 3 of the
description table to defaults */
BX_TRY(BestXTrigTranCondDefaultSet(handle, 0));
BX_TRY(BestXTrigTranCondDefaultSet(handle, 1));
BX_TRY(BestXTrigTranCondDefaultSet(handle, 2));
BX_TRY(BestXTrigTranCondDefaultSet(handle, 3));

/* For transition 0:
Set the current state = 0, the next state = 0.
Go to next state, when not "bus0". */

BX_TRY(BestXTrigTranSet(handle, 0, BX_TRIGTRAN_STATE, 0));
BX_TRY(BestXTrigTranSet(handle, 0, BX_TRIGTRAN_NEXTSTATE, 0));
BX_TRY(BestXTrigCondSet(handle, 0, BX_TRIGCOND_X, "!bus0"));

/* Set the trigger condition.*/
BX_TRY(BestXTrigCondSet(handle, 1, BX_TRIGCOND_TRIG, "0"));

/* Set the storage qualifier. */
BX_TRY(BestXTrigCondSet(handle, 0, BX_TRIGCOND_SQ, "0"));

/* For transition 1:
Set the current state = 0, the next state = 1.
Go to next state on "bus0" pattern */

BX_TRY(BestXTrigTranSet(handle, 1, BX_TRIGTRAN_STATE, 0));
BX_TRY(BestXTrigTranSet(handle, 1, BX_TRIGTRAN_NEXTSTATE, 1));
BX_TRY(BestXTrigCondSet(handle, 1, BX_TRIGCOND_X, "bus0"));

BX_TRY(BestXTrigCondSet(handle, 1, BX_TRIGCOND_TRIG, "1"));
BX_TRY(BestXTrigCondSet(handle, 1, BX_TRIGCOND_SQ, "1"));

/* For Transition 2:
Set the current state = 1, the next state = 1.
Go to next state on "!obs0" pattern (!Idle). */

BX_TRY(BestXTrigTranSet(handle, 2, BX_TRIGTRAN_STATE, 1));
BX_TRY(BestXTrigTranSet(handle, 2, BX_TRIGTRAN_NEXTSTATE, 1));
BX_TRY(BestXTrigCondSet(handle, 2, BX_TRIGCOND_X, "!obs0"));

/* Set the storage qualifier */
BX_TRY(BestXTrigCondSet(handle, 2, BX_TRIGCOND_SQ, "1"));
102 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Trigger Sequencer Programming the Analyzer
/* For Transition 3:
Set the current state = 1, the next state = 0.
Go to next state on "obs0" pattern (Idle). */

BX_TRY(BestXTrigTranSet(handle, 3, BX_TRIGTRAN_STATE, 1));
BX_TRY(BestXTrigTranSet(handle, 3, BX_TRIGTRAN_NEXTSTATE, 0));
BX_TRY(BestXTrigCondSet(handle, 3, BX_TRIGCOND_X, "obs0"));
BX_TRY(BestXTrigCondSet(handle, 3, BX_TRIGCOND_SQ, "1"));

/* Write the sequencer desciption table contents to the
testcard */

BX_TRY(BestXTrigProg(handle));
BX_TRY(BestXExerciserProg(handle));

/* Start the test */

BX_TRY(BestXTraceRun(handle));
BX_TRY(BestXExerciserRun(handle));

/* Check if the Analyzer run and was triggered */
bx_int32 trcstat;
BX_TRY(BestXStatusRead(handle, BX_STAT_TRC_RUNNING, &trcstat));

if (trcstat)
printf("Analyzer running\n");

BX_TRY(BestXStatusRead(handle, BX_STAT_TRC_TRIGGER, &trcstat));
if (trcstat)
{
printf("Analyzer triggered\n");
BX_TRY(BestXTraceStop(handle));
}

BX_TRY(BestXClose(handle));

}

BX_TRY_CATCH
{
/* cleanup, if necessary */
printf("%s\n", BestXErrorStringGet(BX_TRY_RET));
}

return 0;

}

Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 103

Programming the Analyzer Programming the Trace Memory
Programming the Trace Memory

The figure below gives an overview of the components of the trace
memory.

Filling the Trace Memory The trace memory is filled depending on storage qualification. In
sequencer mode, a trigger position counter determines how many
states will be sampled into the trace memory after the trigger event
occurs. The contents of the trace memory can be controlled by a
programmable storage qualifier that suppresses undesired states. If
one or more lines are filtered, a gap information is stored instead.

The following figure shows how the trace memory is filled.

Before using the trace memory, pattern terms must be defined and the
trace memory trigger sequencer must be programmed. See
“Programming Pattern Terms” on page 94 and “Programming the

Trigger Sequencer” on page 96.

Bus Events

Storage
Qualification

Run Start Trigger Event End of Measurement
(Trigger Position
Counter Expired)

Storage
Qualification

Storage
Qualification

Memory Contents

Trigger

G
ap

In
fo

G
ap

In
fo

G
ap

In
fo
104 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Trace Memory Programming the Analyzer
How to Program the Trace Memory
Programming Steps Programming the trace memory requires the following steps:

1 Program the sequencer and the pattern terms to determine the trigger
event. See “Programming Pattern Terms” on page 94 and
“Programming the Trigger Sequencer” on page 96 for more
information.

2 Define the trigger counter preload value that defines how many lines
are captured after a trigger event.

Use BestXTraceDefault and/or WriteBestXTraceWrite.

3 Run the test by starting the trigger sequencer and the trace memory.

Use BestXTraceRun.

The test can be monitored by:

– Polling the trace status register with BestXStatusRead.

– Watching the LEDs on the testcard.

This is particularly useful when the command line interface is used.
The LEDs indicate whether trace memory sampling has stopped
and whether the trigger has occurred.

4 If you want to stop the run, use BestXTraceStop.

In this case, an artificial trigger point is set. The trace memory
contains only samples prior to stoppage (100% pretrigger history).

NOTE The run stops automatically if the memory is full. This can take a lot of
time if storage qualifying suppresses a lot of samples.

5 Before you read the data, allocate a data array that is large enough to
hold the data.

For details, see BestXTraceDataRead in the Agilent E2929A/B Opt.

320 C-API/PPR Reference.

6 Read the trace data from the testcard’s trace memory, beginning with
the line where the trigger event has occurred, and write it to the host
storage with BestXTraceDataRead.

You can also write the complete trace memory content to a file with
BestXTraceDump.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 105

Programming the Analyzer Programming the Trace Memory
7 To analyze the data line for certain signals, proceed as follows:

– Determine the position and size of the desired signals within the
data line with BestXTraceBitPosGet.

– Terminate the connection.

– Displays the results.

Example for Programming the Trace
Memory

Task Perform the following task:

• Trigger and store all the transfers in the trace memory, when an
address phase that addresses the range 10003000\h … 10003fff\h is
detected.

• Stop storing if an idle cycle occurs.

• Read and display the signals stored in the trace memory.

Implementation #include "stdafx.h"
#include <xpciapi.h>
#include "SetupUtil.h"

int main(int argc, char* argv[])
{

BX_TRY_VARS_NO_PROG;
/* additional local variable declarations, here */

bx_handletype handle;
BX_TRY_BEGIN

{

/* Open the connection to the card */

BX_TRY(BestXOpen(&handle, BX_PORT_RS232, BX_PORT_COM2));

BX_TRY(BestXRS232BaudRateSet(handle, BX_BD_57600));

BX_TRY(SetupForTriggerSequencer(handle));
// You can find this function in SetupUtil.cpp

BX_TRY(BestXAnalyzerStop(handle));

/* Insert here the C-API calls to set up the trigger
sequencer as done in “Example for Programming the Trigger
Sequencer” on page 118.*/
106 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Trace Memory Programming the Analyzer
/* Now set up block transfers for the testcard. You can use
the following function available in SetupUtil.cpp */

BX_TRY(SetupForBlockTransfer1(handle));

BX_TRY(BestXRIGenSet(handle, BX_RIGEN_NUMBLK, 2));

BX_TRY(BestXRIGenSet(handle, BX_RIGEN_REPEATBLK, 1));

BX_TRY(BestXRIBlockDefaultSet(handle, 0));

BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_BUSADDR_LO,
0x100030fdUL));

BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_BUSCMD,
BX_RIBLK_BUSCMD_MEM_READBLOCK));

BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_NUMBYTES, 495));

BX_TRY(BestXRIBlockSet(handle, 0, BX_RIBLK_INTADDR, 0));

BX_TRY(BestXRIBlockDefaultSet(handle, 1));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_BUSADDR_LO,
0x1000ffUL));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_BUSCMD,
BX_RIBLK_BUSCMD_IO_WRITE));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_NUMBYTES, 7));

BX_TRY(BestXRIBlockSet(handle, 1, BX_RIBLK_INTADDR, 0));

BX_TRY(BestXExerciserProg(handle));

BX_TRY(BestXAnalyzerRun(handle));

BX_TRY(BestXTraceRun(handle));

BX_TRY(BestXExerciserRun(handle));

/* Check the status of the Trace memory */

bx_int32 trcstat;

BX_TRY(BestXStatusRead(handle, BX_STAT_TRC_RUNNING,
&trcstat));

if (trcstat)

printf("Analyzer running\n");
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 107

Programming the Analyzer Programming the Trace Memory
/* Check to see if the trace memory is triggered */

BX_TRY(BestXStatusRead(handle, BX_STAT_TRC_TRIGGER,
&trcstat));

if (trcstat)

{

printf("Analyzer triggered\n");

BX_TRY(BestXAnalyzerStop(handle));
}

bx_int32 lines;

BX_TRY(BestXStatusRead(handle, BX_STAT_TRC_LINES, &lines));

printf("The number of lines captured is: %d\n",lines);

bx_int32 bytes_per_line;

BX_TRY(BestXTraceBytePerLineGet(handle, &bytes_per_line));

printf("The number of bytes per line is:
%d\n",bytes_per_line);

bx_int32 total_bytes=lines*bytes_per_line;

/* Now define an array to hold the data from the trace memory
*/

bx_int32 *tptr= (bx_int32 *) malloc(total_bytes);

if (tptr!=0)

{

BX_TRY(BestXTraceDataRead(handle, 0 , lines , tptr));
108 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Trace Memory Programming the Analyzer
/* Define variables for the bit positions and lengths within
the trace memory */

bx_int32 ad32_pos;
bx_int32 ad64_pos;
bx_int32 cbe30_pos;
bx_int32 cbe74_pos;
bx_int32 frame_pos;
bx_int32 irdy_pos;
bx_int32 trdy_pos;
bx_int32 devsel_pos;
bx_int32 stop_pos;

bx_int32 ad32_len;
bx_int32 ad64_len;
bx_int32 cbe30_len;
bx_int32 cbe74_len;
bx_int32 frame_len;
bx_int32 irdy_len;
bx_int32 trdy_len;
bx_int32 devsel_len;
bx_int32 stop_len;

/* Find the bit positions of the various signals within the
trace memory */

BX_TRY(BestXTraceBitPosGet(handle, BX_SIG_AD32, &ad32_pos,
&ad32_len));

BX_TRY(BestXTraceBitPosGet(handle, BX_SIG_AD64, &ad64_pos,
&ad64_len));

BX_TRY(BestXTraceBitPosGet(handle, BX_SIG_CBE3_0, &cbe30_pos,
&cbe30_len));

BX_TRY(BestXTraceBitPosGet(handle, BX_SIG_CBE7_4, &cbe74_pos,
&cbe74_len));

BX_TRY(BestXTraceBitPosGet(handle, BX_SIG_FRAME, &frame_pos,
&frame_len));

BX_TRY(BestXTraceBitPosGet(handle, BX_SIG_IRDY, &irdy_pos,
&irdy_len));

BX_TRY(BestXTraceBitPosGet(handle, BX_SIG_TRDY, &trdy_pos,
&trdy_len));

BX_TRY(BestXTraceBitPosGet(handle, BX_SIG_DEVSEL,
&devsel_pos, &devsel_len));

BX_TRY(BestXTraceBitPosGet(handle, BX_SIG_STOP, &stop_pos,
&stop_len));

/* Find the position of the trigger point in the trace memory
*/

bx_int32 trigpos;

BX_TRY(BestXStatusRead(handle, BX_STAT_TRC_TRIGPOS,
&trigpos));

printf("trigger point at %d\n", trigpos);
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 109

Programming the Analyzer Programming the Trace Memory
/* Close the connection to the testcard and display the
results */

BX_TRY(BestXClose(handle));
printf("Line # \tAD64\tAD32\t\tC/BE\tCTRL\n");

int i;
int upload_start=0;
int disp_start=trigpos;

for (i = 0; i < (lines-upload_start)*bytes_per_line/4;
i+=(bytes_per_line/4))
{

printf("%06d\t%08lx %08lx\t %1lx \t%c%c%c%c%c\n",
disp_start,
tptr[i + ad64_pos/32],tptr[i + ad32_pos/32],
(tptr[i + cbe30_pos/32]>>(cbe30_pos%32)) & ((1<<cbe30_len)-1),
(((tptr[i + frame_pos/32]>>(frame_pos%32)) & 1) ? ' ' :'F'),
(((tptr[i + irdy_pos/32]>>(irdy_pos%32)) & 1) ? ' '

:'I'),
(((tptr[i + trdy_pos/32]>>(trdy_pos%32)) & 1) ? ' ' : 'T'),
(((tptr[i + devsel_pos/32]>>(devsel_pos%32)) & 1) ? ' ' :

'D'),
(((tptr[i + stop_pos/32]>>(stop_pos%32)) & 1) ? ' ' :

'S'));

disp_start++;
}

free (tptr);
}

}

BX_TRY_CATCH

{
/* cleanup, if necessary */
printf("%s\n", BestXErrorStringGet(BX_TRY_RET));

}
return 0;
}

110 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Performance Sequencer Programming the Analyzer
Programming the Performance
Sequencer

The testcard features two performance measures that are built up from
two 64-bit counters and a sequencer.

The counters of the performance measures are used for real-time
performance measurements. They count the occurrences of (freely
programmable) events or sequences of events, and thus allow a number
of programmable measurements to be registered in real-time.

The following figure shows the hardware components of the
performance sequencer.

Performance measurement can be divided into the following steps:

1. Setting up pattern terms.

For more information, refer to “Programming Pattern Terms” on

page 94.

2. Programming the sequencer for performance measurement.

For this purpose, the C-API provides its own function set. See “How

to Program the Performance Sequencer” on page 113.

Sequencer Memory
128* 10

Sequencer Memory
128* 10

Counter A
32Bit

Counter A
32Bit

Feedback
Counter

Feedback
Counter

MUXMUX

Overflow

7 State (4)

PatternTerms(7)

Enable

Load /Decrement

Counter B
32Bit

Counter B
32Bit

Enable
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 111

Programming the Analyzer Programming the Performance Sequencer
3. Running the measurement and viewing the results.

For this purpose, the measures must be periodically updated, read
and the desired values (for example, efficiency) must be computed.

To compute the desired values, the counter values (reference counter
and counters A and B) are needed.

See “Example for Programming the Performance Sequencer” on

page 115.
112 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Performance Sequencer Programming the Analyzer
How to Program the Performance
Sequencer
The following figure gives an overview of the performance sequencer
memory programming model.

Sequencer Memory

BestXPerfProg()

Counter B Counter A

CounterMode

Counter B
Enable

Counter A
Enable FromPCI-XBus

ByteEnables

Upload
ToControl PC

4

0
1
2
3

254
255

...

Transients

BestXPerfTranSet() BestXPerfCondSet()

Numeric Transition
Properties

TransitionConditionand
Output ConditionProperties

Sequencer DescriptionTable

Sequencer

BestXPerfCtrRead()

BestXPerfRun()

BestXPerfUpdate()

BestXPerfTranCondDefaultSet()
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 113

Programming the Analyzer Programming the Performance Sequencer
Programming Steps Programming performance measurements requires the following steps:

1 Initialize the entire trace memory trigger sequencer to a single-state
machine.

Use BestXPerfDefaultSet.

2 Set the preload value of counter A.

Use BestXPerfGenSet.

With this function, you can also determine the mode used to
increment counter A (increment by one or by the number of
transferred bytes).

3 First set all transition and condition properties in the sequencer
description table to default values with
BestXPerfTranCondDefaultSet.

4 Set numeric transition properties “Current State” and “Next State”.

NOTE All transition conditions of one state must be mutually exclusive. This
means, that one and only one transition condition of a state can be
true at a time. Otherwise, the software will not accept the table
because the table does not uniquely define the sequencer’s behavior.

Use BestXPerfTranSet.

5 Set conditions in the performance sequencer description table.
Conditions can be:

– transition condition

– conditions to increment nominator or denominator counter

All conditions are specified as logical expressions. These expressions
can either be set directly to true (1) or false (0), or they can consist of
pattern identifiers.

If the programmed condition is true, the sequencer switches to the
“Next State”.

Use BestXPerfCondSet.

6 Write the sequencer description table to the sequencer memory.

Use BestXPerfProg.

7 To run the measurement, start the counters.

Use BestXPerfRun.

8 To check whether the counters have started, and to check for
overflows of each individual counter, read out the performance status
register.

Use BestXStatusGet.
114 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Performance Sequencer Programming the Analyzer
9 To compute required data and to view the results, first update the
counter values and then read them.

Use BestXPerfUpdate and BestXPerfCtrRead.

10 You can stop the performance measurement with BestXPerfStop.

Example for Programming the Performance
Sequencer

Task Display the efficiency and the fraction of non-idle bus states during the
exerciser run.

Implementation /* Open the connection to the card */

BX_TRY(BestXOpen(&handle, BX_PORT_RS232, BX_PORT_COM2));
BX_TRY(BestXRS232BaudRateSet(handle, BX_BD_57600));

/* Set up the card for the Trigger Sequencer Example */

BX_TRY(SetupForTriggerSequencer(handle));
BX_TRY(BestXAnalyzerStop(handle));
BX_TRY(BestXPerfGenDefaultSet(handle, BX_PERFMEAS_0));
BX_TRY(BestXPattProg(handle, BX_PATT_OBS0, "bstate == 8"));
BX_TRY(BestXPattProg(handle, BX_PATT_OBS1, "bstate == 1"));
/* For bstate, the numeric value is required. See “bx_signaltype”
in the Agilent E2929A/B Opt. 320 C-API/PPR Reference. */

/* Set the default values for the transient */

BX_TRY(BestXPerfTranCondDefaultSet(handle, BX_PERFMEAS_0, 0));

/* Set the mode for the counters +/

BX_TRY(BestXPerfGenSet(handle, BX_PERFMEAS_0, BX_PERFGEN_CTRAMODE,
BX_PERFGEN_CTRAMODE_INCBYTEN));

/* Set up the transient to increment the counters when the
conditions are met */

BX_TRY(BestXPerfTranSet(handle, BX_PERFMEAS_0, 0,
BX_PERFTRAN_STATE, 0));

BX_TRY(BestXPerfTranSet(handle, BX_PERFMEAS_0, 0,
BX_PERFTRAN_NEXTSTATE, 0));

BX_TRY(BestXPerfCondSet(handle, BX_PERFMEAS_0, 0, BX_PERFCOND_X,
"1"));

BX_TRY(BestXPerfCondSet(handle, BX_PERFMEAS_0, 0,
BX_PERFCOND_CTRAINC, "obs0"));

BX_TRY(BestXPerfCondSet(handle, BX_PERFMEAS_0, 0,
BX_PERFCOND_CTRBINC, "!obs1"));
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 115

Programming the Analyzer Programming the Performance Sequencer
/* Run the exerciser infinitely to show some traffic using the
backplane */

BX_TRY(BestXRIGenSet(handle,BX_RIGEN_REPEATBLK,0));

BX_TRY(BestXExerciserProg(handle));

/* Program the testcard and run the performance measurement */

BX_TRY(BestXPerfProg(handle, BX_PERFMEAS_0));
BX_TRY(BestXPerfRun(handle));
BX_TRY(BestXExerciserRun(handle));

bx_int32 counter_a;
bx_int32 counter_b;
bx_int32 ref_counter;

float efficiency;
float nonidle;
while (1)

{

/* Read off the counters and print to the screen */

BX_TRY(BestXPerfUpdate(handle));

BX_TRY(BestXPerfCtrRead(handle, BX_PERFMEAS_0, BX_PERFCTR_A,
&counter_a));

BX_TRY(BestXPerfCtrRead(handle, BX_PERFMEAS_0, BX_PERFCTR_B,
&counter_b));

BX_TRY(BestXPerfCtrRead(handle, BX_PERFMEAS_0, BX_PERFCTR_REF,
&ref_counter));

nonidle= ((float)counter_b / (float)ref_counter) *100;
efficiency= ((float)counter_a / ((float)counter_b * 4)) * 100;

printf("Bus Non-idle: %2.2f%% Efficiency: %2.2f%%\r", nonidle,
efficiency);

}

116 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming Protocol Permutator and
Randomizer Properties

The following sections describe the PCI-X Protocol Permutation and
Randomization software and show how to use it.

Background Information You can find background information in:

• “Generating Permutations” on page 123 gives basic information
about permutations supported with the PPR software.

• “How to Write a Test Program” on page 127 introduces the steps
required for setting up a test program.

• “Example Test Design” on page 128 shows a typical scenario to be
tested. This example is used in all further sections.

• “Preparing for PPR Programming” on page 131 gives detailed
information on the first steps for setting up a test program.

Programming Permutations You can find information about permutation programming in:

• “Programming Requester-Initiator Block Permutations” on page 134
gives detailed information on programming and generating requester-
initiator block permutations.

• “Programming RI Behavior Permutations” on page 142 gives
detailed information on programming and generating requester-
initiator behavior permutations.

• “Programming CT Behavior Permutations” on page 147 gives
detailed information on programming and generating completer-target
behavior permutations.

• “Programming CI Behavior Permutations” on page 150 gives
detailed information on programming and generating completer-
initiator behavior permutations.

• “Programming RT Behavior Permutations” on page 153 gives
detailed information on programming and generating requester-target
behavior permutations.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 117

Programming Protocol Permutator and Randomizer Properties Introduction
Running and Analyzing Tests You can find information about how to run tests and how to set up and
analyze test reports in:

• “Generating PPR Reports” on page 155 gives information on the
contents of a PPR report and shows how to program it.

• “Running a PPR Test” on page 157 shows the required programming
steps for running a test.

• “Analyzing the Report” on page 159 describes all information
generated in a PPR Report.

• “Further Options and Possibilities” on page 172 shows how to
optimize the testing time and informs about byte enable variations and
uncovered permutations.

• “Report Listing” on page 174 shows the complete report for the
example specified in “Example Test Design” on page 128.

Introduction

Developing computer systems requires a lot of different tasks and
therefore involves a lot of people. This section outlines the process of
computer system development and some roles of those who are involved
in it. It shows the benefits of PCI-X Protocol Permutation and
Randomization software for each of them.

Computer system development requires the following steps:

• Device bring-up and debugging

The development process starts with the bring-up and debugging
phase. In this phase, the devices (add-in testcards, motherboard, and
so forth) of a computer system are developed independently by
testcard or chipset manufacturers. This phase includes electrical and
PCI-X signal integrity tests and finishes with a functional test phase
at the PCI-X protocol level.

NOTE Corner cases are exhaustive, complicated, and/or uncommon usage of
PCI-X protocol elements, thereby indicating system limitations.
118 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Introduction Programming Protocol Permutator and Randomizer Properties
This test phase requires a well controllable (but artificial) testing
environment. The devices are examined to see whether their protocol
level behavior is as expected. The devices are tested on corner cases,
whereby coverage of the test cases is well known. The tests are mainly
performed by developers of research and development (R&D)
departments.

• System integration

After passing these tests, system integrators assemble systems from
those testcards. The functionality of the testcards is tested in a
functional test phase.

The PCI-X bus is the focus of these examinations, because it connects
the motherboard to the peripheral devices within a computer system.
Functional tests expose the PCI-X interfaces of devices and
motherboard to PCI-X traffic.

The test checks whether the PCI-X devices of the computer system
work as expected. One device after the other is examined, until each
of them is exposed to certain functional tests. The tests consider their
PCI-X compatibility and again the PCI-X behavior in corner cases at
the protocol level.

• System quality assurance

In the last phase, the system is exposed to a system assurance test.
In this phase, it is tested whether all parts of the system cooperate.

Unlike a functional test, a system assurance test requires a realistic
testing scenario. All components must transfer traffic simultaneously.
The test result shows whether the system crashes under this stress.

For system assurance tests, stress tests and performance analysis are
performed to find system bottlenecks.

NOTE Testing peripheral devices (such as graphic testcards, SCSI testcards,
and LAN testcards) may cause some additional effort (for adapting
device drivers or developing test software).

The PCI-X Protocol Permutation and Randomization software provides
functional tests for systems and devices at the PCI-X protocol level and
system assurance tests.

When testing devices, mainly memory controlling mechanisms can be
tested by focusing on host bridges and PCI/PCI-X-to-PCI/PCI-X-bridges.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 119

Programming Protocol Permutator and Randomizer Properties Introduction
Contributions of the PCI-X PPR Software

Increased coverage
The PPR software permutates all desired protocol variations within
constraints set by the user and by the available exerciser. Because the
exerciser can exercise millions of protocol variations (without
reprogramming) that are difficult or too time consuming to generate by
other means, the test coverage is increased tremendously.

Increased confidence
Unlike in a real system, protocol variations are deterministic and
reproducible. After a known number of data transfers, one can be sure
that the DUT has been exposed to all desired protocol permutations. A
printable report shows which protocol attributes will have been
permutated completely against which other protocol attributes as a
function of the number of data transfers.

Reduced test time
Because the PCI-X exerciser can be programmed to change its protocol
behavior from one data transfer to the next with no CPU overhead in
between, the test efficiency approaches 100 %, once the exerciser has
been programmed correspondingly. Assuming that validation tests are
implemented as a series of nested loops, the same exerciser setup can be
used over and over again and thus the setup overhead can be neglected.
Overall, this reduces the CPU overhead tremendously.

Reduced development time
The user only needs to set the permutation constraints; the PPR software
takes care of the permutation.
120 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Introduction Programming Protocol Permutator and Randomizer Properties
Operation Principles
The basic idea is to execute a user-defined block transfer with as many
protocol variations as possible, without changing the intention of the
block transfer.

The PPR software uses the ability of the PCI-X Exerciser to exercise a
series of programmed protocol variations both as a requester and as a
completer.

In this section, the particular role of the PCI-X Protocol Permutation and
Randomization software is explained. It shows how data transfer is
controlled by the Exerciser and Analyzer.

Programmable Memories The test cases require systematically varying transfer parameters
(commands, bytecounts, byte enables). These parameters are controlled
by the Exerciser and Analyzer. The information on how to control the
parameters is held in programmable memories on the testcard:

• The requester-initiator block transfer memory holds control
information on how blocks are to be transferred when the Exerciser
and Analyzer is used as requester-initiator device (for example, start
address alignment, byte enables, bus command).

• The requester-initiator behavior memory holds control
information on requester-initiator behaviors for each transaction (for
example, byte count, address steps, clock delay).

• The completer-target behavior memory is used when the testcard
is used as completer-target device and holds control information on
completer-target behaviors for each transaction (for example, decode
speed, initial target response).

• The completer-initiator behavior memory is used after a
completer-target has given a split response. It holds control
information on how split completion transactions are initiated (for
example, address steps, clock delay).

• The requester-target behavior memory is used when the testcard
has to decode split transactions. It holds control information on
requester-target behaviors for each transaction (for example, decode
speed, initial target response).

The PCI-X Protocol Permutation and Randomization software programs
these memories.

NOTE For more information on the memories, refer to “Programming the

Exerciser” on page 23.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 121

Programming Protocol Permutator and Randomizer Properties Introduction
Performing Parameter Permutations Only the permutation constraints of behaviors and block parameters
need to be set, then the permutation and randomizing algorithm first
calculates whether all possible parameter combinations can be covered
and estimates the testing time. The results of the calculation can be
written into a report. If the algorithm calculated that not all necessary
combinations can be covered, it can still be determined which
combinations can be performed and which cannot.

The PCI-X Protocol Permutation and Randomization software ensures
that the device under test is exposed to all defined protocol variations,
thus, PCI-X Protocol Permutation and Randomization software
determines the course of the test.

The calculation can be repeated with varying parameters, until the
results of the calculation of the PCI-X Protocol Permutation and
Randomization software meet your testing requirements. Then the PCI-X
Protocol Permutation and Randomization software generates all memory
contents, which you can program to the Exerciser using the usual
exerciser functions (i.e. BestXExerciserProg).

Start test execution by calling the exerciser’s run functions. Errors
that occur during the test (protocol errors, bus or device hang) can later
be analyzed using Exerciser and Analyzer’s analyzer functions.
122 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Generating Permutations Programming Protocol Permutator and Randomizer Properties
Generating Permutations

NOTE Generating permutations using the PCI-X Protocol Permutation and
Randomization software takes place in the same way as for PCI.

However, there is no need to understand the permutation algorithms in
detail. The software calculates permutations and coverage automatically
and shows the results in a report.

Basic Terms The goal of permutations is to combine values of different
parameters (variation parameters) or variables.

Example:

In the following simplified example, 3 different parameters are
considered: parameter A, B and C. Each of them holds a value list:

– Parameter A can take the following 2 values: 1 and 2.

– Parameter B can take the following 3 values: 3, 4 and 5.

– Parameter C can take the following 5 values: 6, 7, 8, 9 and A.

Different strategies can be pursued to combine each value of a parameter
with all values of the other parameters at least once.

The PCI-X Protocol Permutator and Randomizer software proceeds as
follows: it simultaneously works through the value lists of the
parameters. With each step—that is each permutation—the next value in
the list is combined with the next values in the other lists. Each
combination is called a tuple.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 123

Programming Protocol Permutator and Randomizer Properties Generating Permutations
Permutation Table Referring to the example, a permutation table would be generated as
shown in the following figure. This figure also shows the repetition
lengths.

The software starts with the following permutations:

• It builds the first tuple (tuple 1) from the first values of each list: 1, 3,
and 6.

• In the next step, it builds tuple 2 from the second values of each list: 2,
4, and 7.

• In the third step, the list of parameter A has already been worked
through. In this case, the software will start again at the beginning of
that list building tuples with the remaining values of the other lists. In
the example, tuple 3 is built of 1, 5, and 8.

The software proceeds in this way until each value of each parameter is
combined with all values of the other parameters, and thus all
combinations are covered.

Parameter

A B C

Permutation 1

5

10

15

20

1 3 6
2 4 7
1 5 8
2 3 9
1 4 A
2 5 6
1 3 7
2 4 8
1 5 9
2 3 A
1 4 6
2 5 7
1 3 8
2 4 9
1 5 A
2 3 6
1 4 7
2 5 8
1 3 9
2 4 A
1 5 6
2 3 7
1 4 8
2 5 9

6

R

R(A)

R(B)

R(C)

R(A, B)

R(A, C)
10

1

5

3

2

124 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Generating Permutations Programming Protocol Permutator and Randomizer Properties
This is the case when the tuples begin to repeat. In the figure, this can be
easily seen with the tuples 1 and 7, considering only parameters A and B.
After each 6 permutations, the tuple sequence of parameters A and B is
repeated.

Repetition Length and Coverage This number of permutations has therefore been named repetition

length, written as “R(A, B)”.

The repetition length can also be specified for each parameter and is
equivalent to the number of values in its value list:

• R(A) is 2

• R(B) is 3

• R(C) is 5

According to the above values, R(A, B) = 6. This equals the product of the
repetition lengths of both parameters A and B, namely 2 and 3. The
repetition length of the other possible pairs can be calculated in the same
way:

• R(A, C) = 2 × 5 = 10

• R(B, C) = 3 × 5 = 15

As can be seen on the previous figure, the tuples built by A and C repeat
every 10 permutations, and B and C every 15 permutations.

The repetition length over all parameters is calculated by multiplying the
repetition lengths of the particular parameters:

R(A, B, C) = 2 × 3 × 5 = 30.

This is represented by the “Permutation Table” on page 124. The 31st
tuple would again be the same as tuple 1, the 32nd tuple as tuple 2, and
so on. This means, that all possible combinations of the values of A, B
and C are covered after 30 permutations (coverage=30).

Unoccupied Prime Number Now a new case will be considered: instead of parameter C, a parameter
D with the possible values B, C, D, and E should be permutated against
parameters A and B. Based on the considerations above, the repetition
lengths are calculated as follows:

• R(D) = 4

• R(A, B) = 2 × 3 = 6 (as above)

• R(A, D) = 2 × 4 = 8

• R(B, D) = 3 × 4 = 12

• R(A, B, D) = 2 × 3 × 4 = 24
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 125

Programming Protocol Permutator and Randomizer Properties Generating Permutations
The following figure, however, shows that this does not work out: the
tuples already start to repeat after 12 permutations, although an overall
repetition length of 24 was calculated.

Furthermore, some values are not combined with all other values: for
example, there is no tuple containing “1” and “C”, and “2” is never
combined with “D”. The reason is that the repetition lengths of
parameters A and D have a common factor (2).

To avoid this, the repetition lengths of all involved parameters must not
have common factors. The software inserts values into the value lists
until the next prime number is reached.

Furthermore, no two parameters may share one prime number as
repetition length. For this reason, the PPR software inserts values until
the next unoccupied prime number is reached.

In the list of parameter D, in the example, one value would have to be
inserted. The list would then hold 5 values, which is the next unoccupied
prime number greater than 4.

NOTE The software would insert the first value of the list again. If more than
one value had to be inserted, the software would proceed in the order of
the values in the list.

Parameter
A B D

Permutation 1

5

10

15

20

24

1 3 B
2 4 C
1 5 D
2 3 E
1 4 B
2 5 C
1 3 D
2 4 E
1 5 B
2 3 C
1 4 D
2 5 E
1 3 B
2 4 C
1 5 D
2 3 E
1 4 B
2 5 C
1 3 D
2 4 E
1 5 B
2 3 C
1 4 D
2 5 E

Duplicates13-24

Permutation1-12
126 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

How to Write a Test Program Programming Protocol Permutator and Randomizer Properties
These are the basics necessary to understand the meaning of repetition
length and coverage and to understand why the PPR software inserts
values into the value lists until the repetition lengths are unoccupied

prime numbers.

How to Write a Test Program

This section gives an overview of how a test session may be built using
the PCI-X Protocol Permutator and Randomizer software.

Programming Steps Programming a test session requires the following steps:

1 Set up the program header.

The program header contains includes, declarations, and an error
handling macro.

How to program the error handling macro is described in “Exception

Handling” on page 15.

2 Initialize the software.

This is done by setting generic properties. See “Preparing for PPR

Programming” on page 131.

3 Programming permutations

– Program requester-initiator block permutations.

See “Programming Requester-Initiator Block Permutations” on

page 134.

– Set up requester-intitiator behavior permutations.

See “Programming RI Behavior Permutations” on page 142.

– Set up completer-target behavior permutations.

See “Programming CT Behavior Permutations” on page 147.

– Set up completer-initiator behavior permutations.

See “Programming CI Behavior Permutations” on page 150.

– Set up requester-target behavior permutations.

See “Programming RT Behavior Permutations” on page 153.

4 Set up the report properties.

For setting up the properties and printing the report, see “Generating

PPR Reports” on page 155
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 127

Programming Protocol Permutator and Randomizer Properties Example Test Design
5 Run the test.

See “Running a PPR Test” on page 157.

6 Close up the program.

Free the allocated memory for the PCI-X Protocol Permutation and
Randomization software and terminate the Agilent E2920 software.
See “Preparing for PPR Programming” on page 131.

A complete reference of the available functions can be found in
Agilent E2929A/B Opt. 320 C-API/PPR Reference or Agilent E2922A/B

Opt. 320 C-API/PPR Reference.

Example Test Design

To illustrate the basic concepts of the Permutator and Randomizer, an
example test is provided. This test is designed to determine whether a
compound block can be correctly transferred using various protocol
variations.

For this test, it is assumed that:

• The compound block is found in the exerciser’s internal block transfer
memory at line 0.

• A 1MB-block is to be transferred from the system memory to the
exerciser, beginning with the starting address 0x20000000.

• The system is assumed to provide a 64-bit PCI-X bus.

• Gaps should be filled with fill blocks.
128 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Example Test Design Programming Protocol Permutator and Randomizer Properties
During the transfer, the following protocol variations should occur:

Permutations to be Covered Different testing areas must be covered during the example test:

• Block variation permutations

The following permutations of block variation parameters (address
alignments, byte enables, bus commands, no snoop, number of bytes)
are required:

– The address alignments 0 … 7 must occur.

– Byte enables are only valid for DWord commands and the memory
write command. Therefore transfers must be executed with 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 byte enables in the data
phase.

– Transfers must be executed with and without snoop.

– Transfers must be executed with a block length of 1, 2, 3, 4, 5, 6, 7, 8,
16, 32, 64, 128, 256, 512, 1024, and 4096 bytes.

– Transfers must be executed with memory read DWord and memory
read block. Memory write and memory write block transfers cannot
be executed, because the programmed direction is read.

Variations Variation Parameter Allowed Values

Requester-Initiator Block Variations address alignments 0, 1, 2, 3, 4, 5, 6, 7

byte enables 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

bus commands BXPPR_RIBLK_BUSCMD_MEM_READDWORD,
BXPPR_RIBLK_BUSCMD_MEM_READBLOCK,
BXPPR_RIBLK_BUSCMD_MEM_WRITE,
BXPPR_RIBLK_BUSCMD_MEM_WRITEBLOCK

no snoop 0, 1

number of bytes 1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, 512, 1024, 4096

Requester-Initiator Behavior Variations byte count 33, 64, 72, 128, 4096

64-bit transfer request 0, 1

Queue BX_RIBEH_QUEUE_A, BX_RIBEH_QUEUE_B

Disconnect 1, 2, 3, 4, 5, 6, 7

Delay 100, 200, 300
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 129

Programming Protocol Permutator and Randomizer Properties Example Test Design
• Requester-initiator behavior permutations

The following permutations of requester-initiator behaviors (byte
count, 64-bit transfer request, queue, disconnect, delay) are required:

– Sequences with 33, 64, 72, 128, and 4096 byte counts must be
generated.

– Sequences with and without 64-bit data transfer request must be
generated.

– Sequences must be generated from queue A and queue B.

– Sequences must be disconnected at every n-th allowable disconnect
boundary, where n is 1 … 7.

– Sequences must be generated after a clock delay of 100, 200, and
300 clock cycles.

• Each block variation permutation must meet each requester-initiator
behavior permutation at least once.

Resource Constraints Resource contraints are determined by the resources of the PCI-X
Exerciser and Analyzer testcard available at the moment the test is run.
For the example, the following is assumed:

• The blocks contained in the block permutation table must be arranged
to fit into the compound block. For the example test, the compound
blocksize (CBS) is assumed to be 1MB.

• The block transfer memory can hold a maximum of 256 entries.

This means that less than 256 blocks may be allocated. Because in this
test example a much larger permutation set is created, the test run
must be iterated to cover all different combinations.

NOTE The following sections describe how to program the desired
permutations and how to get the test results.

The complete implementation of this example can be found under “Code

Listing” on page 185.
130 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Preparing for PPR Programming Programming Protocol Permutator and Randomizer Properties
Preparing for PPR Programming

Before the PCI-X PPR software can be used, the testcard and its
connections have to be initialized. See “Synchronizing the

Environment” on page 189.

After the Exerciser and Analyzer software has been initialized, the PPR
software must be initialized and generic properties, such as bus speed,
bus width, the permutation algorithm and/or the testing level can be set.

Testing Level Generally, testing can be performed on the protocol level, or on the data
level.

• Protocol level testing

The actual data transferred is irrelevant, the focus is on covering as
many protocol variations as allowed. This includes the generation of
error conditions.

• Data level testing

The focus lies on reliable data transfer, so that some variations that
indicate faulty behavior can be skipped.

Available Algorithms The software provides the following algorithms:

• RANDOM

The randomizing algorithm picks commands from the list at random
without eliminating duplicate tuples. Complete coverage can therefore
never be guaranteed.

• PERM

The permutating algorithm picks one command after the other from
the list and combines it with the other parameters, regardless of
whether the command is suitable or not.

For all available generic properties, refer to “bx_ribehtype” in the
Agilent E2929A/B Opt. 320 C-API/PPR Reference or Agilent E2922A/B

Opt. 320 C-API/PPR Reference.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 131

Programming Protocol Permutator and Randomizer Properties Preparing for PPR Programming
How to Prepare for PPR Programming
The following figure shows the generic setup functions used to initialize
and deinitialize the PCI-X Protocol Permutation and Randomization
software and for getting and setting general properties.

Programming Steps To set up the test program, the following steps are required:

1 Initialize the Exerciser and Analyzer testcard.

See “Getting Started” on page 17.

2 Initialize the PPR software by setting all properties of this software to
default values.

Use BestXPprInit.

3 Recommended: Set all generic properties to default values. Use
BestXPprGenDefaultSet.

4 Set general properties, such as PCI-X bus speed and bus width, the
expected number of clocks per data transfer and a random seed.

Use BestXPprGenSet. Using this function also allows you to define
which part of the exerciser will be programmed to the testcard. See
BestXPprProg.

To read the settings, use BestXPprGenGet.

5 Write all current settings to the testcard with BestXPprProg.

NOTE Before you can use this function, the Exerciser must be stopped.

6 At the end of the test, free all memory allocated by the software.

Use BestXPprDelete.

BestXPprGenDefaultSet() Generic
Properties

– Bus Speed

– Bus Width

–Seed

– ...

BestXPprGenSet()

BestXPprGenGet()

Memory
on

Testcard

BestXPprInit()

BestXPprDelete()

BestXPprProg()

Memory onHost
132 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Preparing for PPR Programming Programming Protocol Permutator and Randomizer Properties
Example for Preparing for PPR
Programming

Task Program the following generic properties:

• PCI-X bus width in bits

• PCI-X bus speed in Hz

• Expect 5 clocks per data transfer

• Perform testing on data level

• Use the permutation algorithm to permutate blocks and behaviors

• Perform testing with ADB limitation

Implementation /* Initialize the PPR software */

BX_TRY(BestXPprInit(handle));

/* Set all PPR generic properties to their defaults */

BX_TRY(BestXPprGenDefaultSet(handle));

/* Set all RI PPR properties to their defaults */

BX_TRY(BestXPprRIDefaultSet(handle));

/* Set the PPR generics */

BX_TRY(BestXStatusRead(handle, BX_STAT_BUSWIDTH, &width));
BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_BUSWIDTH, width));

BX_TRY(BestXStatusRead(handle, BX_STAT_BUSSPEED, &speed));
BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_BUSSPEED, speed));

BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_XFERCLKS, 5)); // THIS IS
//JUST AN ESTIMATE

BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_ALGORITHM,
BXPPR_GEN_ALGORITHM_PERM));

BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_LEVEL,
BXPPR_GEN_LEVEL_DATA));

BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_ADBLIMITATION , 1));
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 133

Programming Protocol Permutator and Randomizer Properties Programming Requester-Initiator Block Permutations
Programming Requester-
Initiator Block Permutations

This section describes how a block transfer is prepared and explains the
properties important for the block transfer and the permutations.

Block A block is a contiguous range in the memory that is to be transferred
with one single command. This transfer, however, is always initiated by
a requester-initiator and may require multiple bursts to complete, due to
the requester-initiator intention, completer-target termination, or an
intervention of the arbiter.

Compound Block A compound block consists of several, smaller blocks, which are
transferred by the exerciser as a sequence. The sequence is split into
transactions according to terminations issued by the requester-initiator
or the completer-target.

If the sequence is terminated with a split termination, the completer-
initiator completes this sequence.

Block Permutation Properties Block permutation properties define the intention of the compound
block. The following properties can be set:

• Transfer Direction (BXPPR_RIBLKPERM_DIRECTION)

The transfer direction is seen from the requester-initiator side:

– write

From the Exerciser to system memory

– read

From system memory to the Exerciser

– readcompare

System memory contents are compared with the exerciser
contents.

– writereadcompare

Data are transferred from the exerciser to the system memory, read
back and compared with the original values.
134 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming Requester-Initiator Block Permutations Programming Protocol Permutator and Randomizer Properties
• Compound Block Size (BXPPR_RIBLKPERM_BLOCKSIZE)

The compound block size (CBS) specifies the size of the compound
block in dwords.

The permutation algorithm fits the blocks into this compound block
according to the required block variation constraints. See “Block

Variation Parameters” on page 136 for constraints.

NOTE It is recommended that the compound block size is set to a power of 2.

• Bus Address (BXPPR_RIBLKPERM_BUSADDRESS_LO,
BXPPR_RIBLKPERM_BUSADDRESS_HI)

The bus address is the starting address in the PCI-X memory range of
the system under test to which the compound block will be
transferred, or from which it will be read.

WA RNING Always allocate the required memory for your test program. If you
write directly into system memory (bypassing by the operating
system), the system may seriously crash.

• Resource (BXPPR_RIBLKPERM_RESOURCE)

Defines the internal resource (data memory or data generator) to
which the compound block will be transferred, or from which it will
be read.

• Internal Address (BXPPR_RIBLKPERM_INTADDR)

The internal address is the starting address within the internal
resource of the testcard (data memory or data generator) to which the
compound block will be transferred, or from which it will be read.

NOTE The PCI-X Protocol and Randomizer software does not fill up memory
with data. This can be done with the appropriate standard C-API
functions. See “Programming the Data Memory” on page 81.

• First Permutation Number (BXPPR_RIBLKPERM_FIRSTPERM)

This value is used to start the permutation algorithm with a certain
value. It can be used to continue a permutation if a previous
permutation had to be interrupted, for example, because of an
overflowing block permutation memory.

• Fill Gaps (BXPPR_RIBLKPERM_FILLGAPS)

This boolean value determines whether or not gaps between blocks in
the compound block are filled after fitting in block permutations.
Filling these gaps ensures that the whole compound block will be
transferred. However, to fill the gaps, all address alignments and byte
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 135

Programming Protocol Permutator and Randomizer Properties Programming Requester-Initiator Block Permutations
enable values will be used, not just the values specified for these
parameters.

• Start Offset (BXPPR_RIBLKPERM_STARTOFFSET)

Defines at which line of the requester-initiator block permutation
memory the programming begins.

• Size Limit (BXPPR_RIBLKPERM_SIZELIMIT)

Limits the requester-initiator block permutation memory usage.

• Tuples (BXPPR_RIBLKPERM_TUPLES)

Maximum number of groups that are permutated against each other
for calculation of coverage.

Block Variation Parameters Block variation parameters specify how the compound block is to be
intensified by permutated variations of parameters, such as block size or
alignment.

These parameters can be constrained to design a test scenario according
to the testing requirements. To constrain a parameter, a list of values to
be permutated and an algorithm for picking the values from the list can
be specified. The algorithm selects values either at random or
sequentially. To specify an algorithm, see “How to Prepare for PPR

Programming” on page 132.

The following block variation parameters are available:

• Bus Commands (BXPPR_RIBLK_BUSCMD)

A list of PCI-X bus commands can be specified. All PCI-X bus
commands can be specified, but only those commands that are
suitable for the specified transfer direction will be used for variations.

NOTE Because there are no limitations on alignments for any command, the
permutation of commands is straightforward. Because the breaking-
down of bursts into single transfers for DWord commands is
performed in the hardware, no special handling is necessary.

I/O commands and memory commands cannot be mixed.

NOTE Usage of DWord commands limits variation on termination, REQ64
usage and RELREQ permutations.

• Alignment (BXPPR_RIBLK_ALIGN)

A list of alignments to the 128-byte ADB can be specified.

Permutation on alignments leaves gaps between blocks, which can
either be filled automatically or left uncovered. See “Fill Gaps

(BXPPR_RIBLKPERM_FILLGAPS)” on page 135.
136 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming Requester-Initiator Block Permutations Programming Protocol Permutator and Randomizer Properties
• Byte Enables (BXPPR_RIBLK_BYTEN)

A list of byte enables can be specified to occur in the data phase of the
block transfer.

Byte enables are only valid for the following commands:

BX_BUSCMD_MEM_WRITE, BX_BUSCMD_MEM_READDWORD, BX_BUSCMD_IO_READ,
and BX_BUSCMD_IO_WRITE.

Therefore, permutation is only performed if one of these commands is
in the commands variation list.

NOTE Alignments and byte count settings may limit byte enables to the valid
data. This can introduce byte enables that are not in the variation list
or could even lead to a parameter being shipped from the list
completely. This is stated in the report.

• Number of Bytes (BXPPR_RIBLK_NUMBYTES)

Defines the number of bytes for the current block.

• Relaxed order (BXPPR_RIBLK_RELAXORDER)

Defines if the relaxed ordering bit is shown in the attribute phase.

• No snoop (BXPPR_RIBLK_NOSNOOP)

Defines whether snoop will be done.

Coverage The software computes whether all blocks required for the permutations
fit into the specified compound block. Coverage is achieved if all
possible permutations are covered after all blocks in the compound
block have been transferred. The result of this computation can be
written to a report.

The coverage of the requester-inititiator block permutation depends on
the number of variation parameters examined, the PCI-X bus commands
used, and the algorithm that selects the parameter combination for each
permutation step.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 137

Programming Protocol Permutator and Randomizer Properties Programming Requester-Initiator Block Permutations
Calculations of Coverage The following table describes the scheme used by the software to
determine the coverage of the variation list.

To compute the coverage information, the software works through the
specified block variation parameters, through all of their allowed values,
and creates a block with each parameter combination. Illegal
combinations are replaced by legal ones. Because these valid
combinations may have occurred before, this may produce duplicate
combinations. Such duplicates will be skipped automatically.

NOTE The allocated memory must be freed before the Exerciser and Analyzer
software is terminated.

See “How to Prepare for PPR Programming” on page 132.

After a number of blocks (variation list length N), duplicate blocks would
be created. Thus, a block property is covered after N data transfers. For
example, two data transfers are required to test a block that consists of
two address alignment values.

The number of data transfers needed to guarantee that each block
property value is calcutated by multiplying the number of values of each
property. For example, to combine 5 address alignments with 3 block
sizes, 5 × 3 = 15 data transfers (blocks) are required.

The variation list lengths N and repetition lengths R can be queried or
can be found in the report.

Direction

Algorithm

RAND PERM

READ No coverage can be
guaranteed

Coverage =

Repetition length of commands
in the list, raised up to the next
prime

WRITE Coverage =

Repetition length of all
commands in the list, raised up
to the next prime

×

Repetition length of the
influencing parameters, raised
up to the next prime
138 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming Requester-Initiator Block Permutations Programming Protocol Permutator and Randomizer Properties
NOTE The calculated test coverage only indicates which protocol permutations
are intended to be used. The device under test will be exposed to all
permutations, but it cannot be guaranteed that a transfer will take place
using each permutation (for example, due to specific device
characteristics or malfunctions).

Testing Time The testing time required to execute the compound block on the testcard
can be printed to the report. It consists of the compound block size
multiplied by the time needed per data transfer.

How to Program RI Block Permutations
The following figure shows the requester-initiator block and the report
functions used to prepare and to perform a requester-initiator block
permutation.

Contribution Testing Time

Requester-Initiator Block Permutation
Testing Time

CBS × Time-per-data-transfer

Variations
ValueConstraints
per Variation
Parameter

Permutation
Properties
–direction
–blocksize
– intaddr
–busaddr

Report
Properties
–Report Parts
–List Lengths

BestXPprRIBlkPermSet()

BestXPprRIBlkPermGet()

BestXPprRIBlkListSet()

BestXPprRIBlkListGet()

BestXPprReportSet()

BestXPprReportGet()

BestPprRIBlkResultGet()

BestXPprReportWrite()
BestXPprReportFile()

Report
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 139

Programming Protocol Permutator and Randomizer Properties Programming Requester-Initiator Block Permutations
Programming Steps To program requester-initiator block permutations, the following steps
are required:

1 Prepare a permutation by setting the block permutation properties
(for example, transfer direction, bus address and internal address).

Use BestXPprRIBlkPermSet.

2 Define lists of values for the variations with BestXPprRIBlkListSet.

These lists specify values for the block variation parameters to be
permutated according to the testing requirements. Block variation
parameters are alignment, block size, values of the C/BE lines in the
data phase and block commands.

3 If you want to check whether your test requirements are really
suitable, request the test results, such as the actually used block
memory size and the number of the last requester-initiator block
permutation.

Use BestXPprRIBlkResultGet.

If the number of permutations is larger than the number of possible
block memory entries (256), execution of permutations must be
iterated to run all different combinations. See “Example for

Programming RI Block Permutations” on page 141.

4 Write all PPR settings to the testcard with BestXPprProg.

5 The permutation results can be requested from the PCI-X Protocol
Permutation and Randomization software. Adjusted properties and
permutation results can then be written to a report file.

Use BestXPprReportWrite or BestXPprReportFile.

NOTE The contents of the report file can be controlled with
BestXPprReportSet and BestXPprReportGet.
140 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming Requester-Initiator Block Permutations Programming Protocol Permutator and Randomizer Properties
Example for Programming RI Block
Permutations

Task For this test, it is assumed that:

• The compound block is found in the exerciser’s internal block transfer
memory at line 0.

• A 1MB-block is to be transferred from the system memory to the
exerciser, beginning with the starting address 0x20000000.

• The system is assumed to provide a 64-bit PCI-X bus.

• Gaps should be filled with fill blocks.

During the transfer, the following protocol variations should occur:

Implementation /* Program the block permutation properties */

BX_TRY(BestXPprRIBlkPermSet(handle, BXPPR_RIBLKPERM_DIRECTION,
BXPPR_RIBLKPERM_DIRECTION_READ));

BX_TRY(BestXPprRIBlkPermSet(handle, BXPPR_RIBLKPERM_BLOCKSIZE,
0x100000)); // a 1M block

BX_TRY(BestXPprRIBlkPermSet(handle, BXPPR_RIBLKPERM_BUSADDR_LO,
0x20000000));

BX_TRY(BestXPprRIBlkPermSet(handle, BXPPR_RIBLKPERM_BUSADDR_HI,
0x30000000));

BX_TRY(BestXPprRIBlkPermSet(handle, BXPPR_RIBLKPERM_INTADDR,
0x0000));

BX_TRY(BestXPprRIBlkPermSet(handle, BXPPR_RIBLKPERM_FILLGAPS,
BX_YES)); // this is the default

/* Start filling the Block transfer memory at line 0 of 256 */

BX_TRY(BestXPprRIBlkPermSet(handle, BXPPR_RIBLKPERM_STARTOFFSET,
0)); //this is the default

/* Define the permutation lists. These lists of values will be
permutated against each other */

Variations Variation Parameter Allowed Values

Requester-Initiator Block Variations address alignments 0, 1, 2, 3, 4, 5, 6, 7

byte enables 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

bus commands BXPPR_RIBLK_BUSCMD_MEM_READDWORD,
BXPPR_RIBLK_BUSCMD_MEM_READBLOCK,
BXPPR_RIBLK_BUSCMD_MEM_WRITE,
BXPPR_RIBLK_BUSCMD_MEM_WRITEBLOCK

no snoop 0, 1

number of bytes 1, 2, 3, 4, 5, 6, 7, 8, 16, 32, 64, 128, 256, 512, 1024, 4096
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 141

Programming Protocol Permutator and Randomizer Properties Programming RI Behavior Permutations
/* The permutated BUSCMD values are dependent on
BXPPR_RIBLKPERM_DIRECTION */

BX_TRY(BestXPprRIBlkListSet(handle, BXPPR_RIBLK_BUSCMD, \
"BX_RIBLK_BUSCMD_MEM_READDWORD,
BX_RIBLK_BUSCMD_MEM_READBLOCK,
BX_RIBLK_BUSCMD_MEM_WRITE,
BX_RIBLK_BUSCMD_MEM_WRITEBLOCK"));

BX_TRY(BestXPprRIBlkListSet(handle, BXPPR_RIBLK_NOSNOOP, "0,1"));

BX_TRY(BestXPprRIBlkListSet(handle, BXPPR_RIBLK_ALIGN,
"0,1,2,3,4,5,6,7"));

BX_TRY(BestXPprRIBlkListSet(handle, BXPPR_RIBLK_BYTEN,
"0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15"));

BX_TRY(BestXPprRIBlkListSet(handle, BXPPR_RIBLK_NUMBYTES,
"1,2,3,4,5,6,7,8,16,32,64,
128,256,512,1024,4096"));

Programming RI Behavior
Permutations

The requester-initiator behaviors can be constrained and permutated in
the same way as the requester-initiator block variation parameters
described above.

Requester-Initiator Behaviors To achieve more sophisticated randomization opportunities, the
requester-initiator behaviors are divided into groups, which are varied
against each other. The following tables show which behaviors are
assigned to which group:

Variation Parameters A list of values can be specified for every requester-initiator behavior.

Group Behaviors

Group 0 Queue, Steps, Req64

Group 1 Byte Count

Group 2 Disconnect

Group 3 Delay, RelReq
142 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming RI Behavior Permutations Programming Protocol Permutator and Randomizer Properties
Coverage To get the coverage result, the requester-inititiator behaviors are first
permutated against required behaviors within their own group. The
resulting repetition length is increased to the next higher unoccupied
prime number greater than 2—the prime number 2 is skipped to obtain
an odd requester-initiator behavior page size.

NOTE For an explanation of how the permutations are generated, refer to
“Generating Permutations” on page 123.

Finally, the algorithm computes the number of data transfers required to
achieve complete coverage by internally permutating the behavior
groups against each other.

The repetition lengths per group and the coverage information per
group and per group combination (tuples) can be found in the report.
The algorithm also calculates how many block runs are needed to cover
all required combinations, and determines the amount of data to be
transferred. Additionally, this information can also be queried using
C-API functions.

Testing Time The testing time is determined by the number of PCI-X data transfers
resulting from the number of groups and their lines to be permutated in
the requester-initiator behavior memory.

Block vs. Requester-Initiator
Behavior Permutation

The requester-initiator block parameters can be permutated against
requester-initiator behaviors. Requester-initiator behaviors are
permutated through their values when a compound block is executed
repeatedly.

After the compound block has been completely executed with each
requester-initiator behavior group combination, all permutated block
variation properties have been permutated against all permutated
requester-initiator behaviors. The algorithm calculates how many block
runs are needed to cover all required requester-initiator behaviors and
their combinations and the amount of data to be transferred.

If the compound block size has been set to a power of 2, it is ensured that
all permutated block variation properties have permutated against all
permutated requester-initiator behaviors.

Testing Time for Requester-Initiator Behavior Permutations

Number of data transfers × Time-per-data-transfer
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 143

Programming Protocol Permutator and Randomizer Properties Programming RI Behavior Permutations
Testing Time The testing time is determined by the testing time for the requester-
initiator block permutations and the number of requester-initiator
behavior permutations.

How to Program RI Behavior Permutations
The following figure shows the requester-initiator behavior and report
functions used to prepare and to perform the permutation of the
requester-initiator behavior.

Programming Steps Programming requester-initiator behavior permutations requires the
following steps:

1 Prepare a permutation by setting the permutation properties
according to the resource requirements.

Use BestXPprRIBehPermSet.

Requester-initiator behavior permutation properties are:

– the maximum number of groups that are permutated against each
other for calculation of coverage

– a starting point for the permutation algorithm

Testing Time

Testing Time for Requester-Initiator Block Permutations
×
Number of Behavior Permutations

Variations
- Value

Constraintsper
variation

parameter

Permutation
Properties

Resources

Report

Properties

BestXPprRIBehPermSet()

BestXPprRIBehPermGet()

BestXPprReportPropSet()

BestXPprReportPropGet()

BestXPprRIBehResultGet()

BestXPprReportWrite()
BestXPprReportFile()

Variations
Value Constraints
per Variation
Parameter

Permutation
Properties

–Report Parts
–List Lengths

BestXPprRIBehListSet()

BestXPprRIBehListGet()

Report

- First permutation
- Tuples
144 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming RI Behavior Permutations Programming Protocol Permutator and Randomizer Properties
2 Define the lists of values for the variations with
BestXPprRIBehListSet.

These lists specify values for the requester-initiator behavior
properties to be permutated according to the testing requirements.
For the behavior properties, refer to “bx_ribehtype” in the
Agilent E2929A/B Opt. 320 C-API/PPR Reference or
Agilent E2922A/B Opt. 320 C-API/PPR Reference.

3 If you want to check whether your test requirements are really
suitable, request the test results or coverage.

Use BestXPprRIBehResultGet.

4 Write all PPR settings to the testcard with BestXPprProg.

5 The permutation results can be requested from the PCI-X Protocol
Permutator and Randomizer software. Adjusted properties and
permutation results can then be written to a report file.

Use BestXPprReportWrite or BestXPprReportFile.

NOTE The contents of the report file can be controlled with
BestXPprReportSet and BestXPprReportGet.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 145

Programming Protocol Permutator and Randomizer Properties Programming RI Behavior Permutations
Example for Programming RI Behavior
Permutations

Task Program the following requester-initiator behavior variations:

Implementation BX_TRY(BestXPprRIBehPermDefaultSet(handle));

BX_TRY(BestXPprRIBehListSet(handle, BX_RIBEH_BYTECOUNT, "33, 64,
72, 128, 4096"));

BX_TRY(BestXPprRIBehListSet(handle, BX_RIBEH_REQ64, "0,1"));

BX_TRY(BestXPprRIBehListSet(handle, BX_RIBEH_QUEUE,
"BX_RIBEH_QUEUE_A, BX_RIBEH_QUEUE_B"));

BX_TRY(BestXPprRIBehListSet(handle, BX_RIBEH_DISCONNECT,
"1,2,3,4,5,6,7"));

BX_TRY(BestXPprRIBehListSet(handle, BX_RIBEH_DELAY,
"100,200,300"));

BX_TRY(BestXPprRIBehPermSet(handle, BXPPR_BEHPERM_FIRSTPERM, 1));

Variations Variation Parameter Allowed Values

Requester-Initiator Behavior Variations byte count 33, 64, 72, 128, 4096

64-bit transfer request 0, 1

Queue BX_RIBEH_QUEUE_A, BX_RIBEH_QUEUE_B

Disconnect 1, 2, 3, 4, 5, 6, 7

Delay 100, 200, 300
146 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming CT Behavior Permutations Programming Protocol Permutator and Randomizer Properties
Programming CT Behavior
Permutations

The completer-target behaviors can be constrained and permutated in
the same way as the requester-initiator block variation parameters
described above.

Completer-Target Behaviors To achieve more sophisticated randomization opportunities, the
completer-target behaviors are divided into groups, which are varied
against each other. The following tables show which behaviors are
assigned to which group:

Variation Parameters A list of values can be specified for every completer-target behavior.

Coverage To get the coverage result, the completer-target behaviors are first
permutated against required behaviors within their own group. The
resulting repetition length is increased to the next higher unoccupied
prime number greater than 2—the prime number 2 is skipped to obtain
an odd completer-target behavior page size.

NOTE For an explanation of how the permutations are generated, refer to
“Generating Permutations” on page 123.

Finally, the algorithm computes the number of data transfers required to
achieve complete coverage by internally permutating the behavior
groups against each other.

The repetition lengths per group and the coverage information per
group and per group combination (tuples) can be found in the report.

Group Behaviors

Group 0 DecSpeed, Ack64, SplitLatency

Group 1 Initital, Latency

Group 2 Subseq, SubseqPhase, SplitEnable
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 147

Programming Protocol Permutator and Randomizer Properties Programming CT Behavior Permutations
How to Program CT Behavior Permutations
The following figure shows the completer-target behavior and report
functions used to prepare and to perform the permutation of the
completer-target behaviors.

Programming Steps To program completer-target behavior permutations, the following steps
are required:

1 Prepare a permutation by setting the permutation properties
according to the resource requirements.

Use BestXPprCTBehPermSet.

Completer-target behavior permutation properties are:

– the maximum number of groups that are permutated against each
other for calculation of coverage

– a starting point for the permutation algorithm

2 Define the lists of values for the variations with
BestXPprCTBehListSet.

These lists specify values for the completer-target behavior properties
to be permutated according to the testing requirements. For the
behavior properties, refer to “bx_ctbehtype” in the Agilent E2929A/B

Opt. 320 C-API/PPR Reference or Agilent E2922A/B Opt. 320 C-

API/PPR Reference.

Variations
- Value

Constraintsper
variation

parameter

Permutation
Properties

Resources

Report

Properties

BestXPprCTBehPermSet()

BestXPprCTBehPermGet()

BestXPprReportPropSet()

BestXPprReportPropGet()

BestXPprCTBehResultGet()

BestXPprReportWrite()
BestXPprReportFile()

Variations
ValueConstraints
per Variation
Parameter

Permutation
Properties

–Report Parts
–List Lengths

BestXPprCTBehListSet()

BestXPprCTBehListGet()

Report

- First permutation
- Tuples
148 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming CT Behavior Permutations Programming Protocol Permutator and Randomizer Properties
3 If you want to check whether your test requirements are really
suitable, request the test results or coverage.

Use BestXPprCTBehResultGet.

4 Write all PPR settings to the testcard with BestXPprProg.

5 The permutation results can be requested from the PCI-X Protocol
Permutator and Randomizer software. Adjusted properties and
permutation results can then be written to a report file.

Use BestXPprReportWrite or BestXPprReportFile.

NOTE The contents of the report file can be controlled with
BestXPprReportPropSet and BestXPprReportPropGet.

Example for Programming CT Behavior
Permutations
In general, the setup of the C code for programming the completer-target
behavior permutations takes place in the same way as described for
requester-initiator permutations.

Refer to “Example for Programming RI Behavior Permutations” on

page 146 for programming requester-initiator behavior permutations.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 149

Programming Protocol Permutator and Randomizer Properties Programming CI Behavior Permutations
Programming CI Behavior
Permutations

The completer-initiator behaviors can be constrained and permutated in
the same way as the requester-initiator block variation parameters
described above.

Completer-Initiator Behaviors To achieve more sophisticated randomization opportunities, the
completer-initiator behaviors are divided into groups, which are varied
against each other. The following tables show which behaviors are
assigned to which group:

Variation Parameters A list of values can be specified for every completer-initiator behavior.

Coverage To get the coverage result, the completer-initiator behaviors are first
permutated against required behaviors within their own group. The
resulting repetition length is increased to the next higher unoccupied
prime number greater than 2—the prime number 2 is skipped to obtain
an odd completer-initiator behavior page size.

NOTE For an explanation of how the permutations are generated, refer to
“Generating Permutations” on page 123.

Finally, the algorithm computes the number of data transfers required to
achieve complete coverage by internally permutating the behavior
groups against each other.

The repetition lengths per group and the coverage information per
group and per group combination (tuples) can be found in the report.

Group Behaviors

Group 0 Queue

Group 1 ErrMsg

Group 2 Partition

Group 3 Delay, RelReq

Group 4 Steps, Req64
150 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming CI Behavior Permutations Programming Protocol Permutator and Randomizer Properties
How to Program CI Behavior Permutations
The following figure shows the completer-initiator behavior and report
functions used to prepare and to perform the permutation of the
completer-initiator behaviors.

Programming Steps To program completer-initiator behavior permutations, the following
steps are required:

1 Prepare a permutation by setting the permutation properties
according to the resource requirements.

Use BestXPprCIBehPermSet.

Completer-initiator behavior permutation properties are:

– the maximum number of groups that are permutated against each
other for calculation of coverage

– a starting point for the permutation algorithm

2 Define the lists of values for the variations with
BestXPprCIBehListSet.

These lists specify values for the completer-initiator behavior
properties to be permutated according to the testing requirements.
For the behavior properties, refer to “bx_cibehtype” in the
Agilent E2929A/B Opt. 320 C-API/PPR Reference or
Agilent E2922A/B Opt. 320 C-API/PPR Reference.

Variations
- Value

Constraintsper
variation

parameter

Permutation
Properties

Resources

Report

Properties

BestXPprCIBehPermSet()

BestXPprCIBehPermGet()

BestXPprReportPropSet()

BestXPprReportPropGet()

BestXPprCIBehResultGet()

BestXPprReportWrite()
BestXPprReportFile()

Variations
Value Constraints
per Variation
Parameter

Permutation
Properties

–Report Parts
–List Lengths

BestXPprCIBehListSet()

BestXPprCIBehListGet()

Report

- First permutation
- Tuples
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 151

Programming Protocol Permutator and Randomizer Properties Programming CI Behavior Permutations
3 If you want to check whether your test requirements are really
suitable, request the test results or coverage.

Use BestXPprCIBehResultGet.

4 Write all PPR settings to the testcard with BestXPprProg.

5 The permutation results can be requested from the PCI-X Protocol
Permutator and Randomizer software. Adjusted properties and
permutation results can then be written to a report file.

Use BestXPprReportWrite or BestXPprReportFile.

NOTE The contents of the report file can be controlled with
BestXPprReportSet and BestXPprReportGet.

Example for Programming CI Behavior
Permutations
In general, the setup of the C code for programming the completer-
initiator behavior permutations takes place in the same way as described
for requester-initiator permutations.

Refer to “Example for Programming RI Behavior Permutations” on

page 146 for programming requester-initiator behavior permutations.
152 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming RT Behavior Permutations Programming Protocol Permutator and Randomizer Properties
Programming RT Behavior
Permutations

The requester-target behaviors can be constrained and permutated in the
same way as the requester-initiator block variation parameters described
above.

Requester-Target Behaviors To achieve more sophisticated randomization opportunities, the
requester-target behaviors are divided into groups, which are varied
against each other. The following tables show which behaviors are
assigned to which group:

Variation Parameters A list of values can be specified for every requester-target behavior.

Coverage To get the coverage result, the requester-target behaviors are first
permutated against required behaviors within their own group. The
resulting repetition length is increased to the next higher unoccupied
prime number greater than 2—the prime number 2 is skipped to obtain
an odd requester-initiator behavior page size.

NOTE For an explanation of how the permutations are generated, refer to
“Generating Permutations” on page 123.

Finally, the algorithm computes the number of data transfers required to
achieve complete coverage by internally permutating the behavior
groups against each other.

The repetition lengths per group and the coverage information per
group and per group combination (tuples) can be found in the report.

Group Behaviors

Group 0 DecSpeed, Ack64

Group 1 Initial, Latency

Group 2 Subseq, SubseqPhase
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 153

Programming Protocol Permutator and Randomizer Properties Programming RT Behavior Permutations
How to Program RT Behavior Permutations
The following figure shows the requester-target behaviors and report
functions used to prepare and to perform the permutation of the
requester-target behaviors.

Programming Steps To program requester-target behavior permutations, the following steps
are required:

1 Prepare a permutation by setting the permutation properties
according to the resource requirements.

Use BestXPprRTBehPermSet.

Requester-target behavior permutation properties are:

– the maximum number of groups that are permutated against each
other for calculation of coverage

– a starting point for the permutation algorithm

2 Define the lists of values for the variations with
BestXPprRTBehListSet.

These lists specify values for the requester-target behavior properties
to be permutated according to the testing requirements. For the
behavior properties, refer to “bx_rtbehtype” in the Agilent E2929A/B

Opt. 320 C-API/PPR Reference or Agilent E2922A/B Opt. 320 C-

API/PPR Reference.

Variations
- Value

Constraintsper
variation

parameter

Permutation
Properties

Resources

Report

Properties

BestXPprRTBehPermSet()

BestXPprRTBehPermGet()

BestXPprReportPropSet()

BestXPprReportPropGet()

BestXPprRTBehResultGet()

BestXPprReportWrite()
BestXPprReportFile()

Variations
ValueConstraints
per Variation
Parameter

Permutation
Properties

–Report Parts
–List Lengths

BestXPprRTBehListSet()

BestXPprRTBehListGet()

Report

- First permutation
- Tuples
154 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Generating PPR Reports Programming Protocol Permutator and Randomizer Properties
3 If you want to check whether your test requirements are really
suitable, request the test results or coverage.

Use BestXPprRIBehResultGet.

4 Write all PPR settings to the testcard with BestXPprProg.

5 The permutation results can be requested from the PCI-X Protocol
Permutator and Randomizer software. Adjusted properties and
permutation results can then be written to a report file.

Use BestXPprReportWrite or BestXPprReportFile.

NOTE The contents of the report file can be controlled with
BestXPprReportSet and BestXPprReportGet.

Example for Programming RT Behavior
Permutations
In general, the setup of the C code for programming the requester-target
behavior permutations takes place in the same way as described for
requester-initiator permutations.

Refer to “Example for Programming RI Behavior Permutations” on

page 146 for programming requester-initiator behavior permutations.

Generating PPR Reports

A report lists the executed protocol variations and shows which protocol
attributes are permutated against which other protocol attributes after
which number of data transfers.

In detail, the report contains the following information:

• Creation date and time

• Hardware, generic and report properties
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 155

Programming Protocol Permutator and Randomizer Properties Generating PPR Reports
• Requester-initiator block variations

• Requester-initiator behavior variations

• Requester-target behavior variations

• Completer-initiator behavior variations

• Completer-target behavior variations

• Report properties

• C-API abbreviations

The contents of the report can be limited by setting report properties.
For a list of constraints, refer to “bppr_reportproptype” in the
Agilent E2929A/B Opt. 320 C-API/PPR Reference or Agilent E2922A/B

Opt. 320 C-API/PPR Reference.

The report can be generated and written into a specified file.

The program generated for “Example Test Design” on page 128 can be
found in “Analyzing the Report” on page 159.

How to Generate PPR Reports
The following figure shows the report functions used to prepare all kinds
of permutations and to view the test results.

Programming Steps Programming the report functions requires the following steps:

1 Control the contents of the report file. For the list of available
properties, see “bppr_reportproptype” in the Agilent E2929A/B Opt.

320 C-API/PPR Reference.

Use BestXPprReportSet and BestXReportGet.

2 Request the permutation results from the PCI-X Protocol Permutator
and Randomizer software and write all adjusted properties and the
permutation results to a report file.

Use BestXPprReportWrite or BestXPprReportFile.

Report Properties

– Include C-API Abbreviations
–Contents Lengths

BestXPprReportSet()

BestXPprReportGet()

BestXPprReportWrite()

BestXPprReportFile()

Report
156 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Running a PPR Test Programming Protocol Permutator and Randomizer Properties
Example for Generating PPR Reports
Task Include the C-API abbreviations into the PPR report and create report

files for each new permutation.

Implementation /* Include the C-API abbreviations into the PPR report. */

BX_TRY(BestXPprReportSet(handle, BXPPR_REPORT_CAPI, BX_YES));

/* Create a report file name */

strcat (reportname, _itoa(i, num, 10));
strcat (reportname, ".txt");

/* Generate a report file for each new permutation (iteration) */

BX_TRY(BestXPprReportFile(handle, reportname));

Running a PPR Test

To run the PPR test, the PCI-X Protocol Permutation and Randomization
software is not required. This is performed by the testcard’s exerciser
run functions. To analyze errors that occur during the test, the testcard’s
analyzer functions can be used.

How to Run a PPR Test
Programming Steps To run a PPR test, the following steps are required:

1 Program the PPR und Exerciser settings testcard with BestXPprProg
and BestXExerciserProg.

2 Run the Exerciser with BestXExerciserRun.

Example for Running a PPR Test
Task Run a PPR test.

Implementation /* Evaluate how many permutations are done */

BX_TRY(BestXPprRIBlkResultGet(handle, BXPPR_RIBLKRES_LASTPERM,
&lastperm));

BX_TRY(BestXPprRIBlkResultGet(handle, BXPPR_RIBLKRES_ACTUALSIZE,
&actualsize));
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 157

Programming Protocol Permutator and Randomizer Properties Running a PPR Test
printf("lastperm = %ld actualsize = %d\n", lastperm, actualsize);

for (i=1; i < lastperm; i+=actualsize)

{
char num[6];
char reportname[80] = "c:\\temp\\PprReport";

/* Because the block transfer memory can only hold 256 entries
and we are creating a much larger permutation set, so we must
iterate this to run all different combinations */

BX_TRY(BestXPprRIBlkPermSet(handle, BXPPR_RIBLKPERM_FIRSTPERM,
i));

BX_TRY(BestXPprRIBlkResultGet(handle, BXPPR_RIBLKRES_ACTUALSIZE,
&actualsize));

/* Program the PPR und Exerciser settings testcard */

BX_TRY(BestXPprProg(handle));
BX_TRY(BestXExerciserProg(handle));

/* Create a report file name */

strcat (reportname, _itoa(i, num, 10));
strcat (reportname, ".txt");

/* Generate a report file for each new permutation (iteration) */

BX_TRY(BestXPprReportFile(handle, reportname));
time(&start);

/* Start the exerciser … */

BX_TRY(BestXExerciserRun(handle));
time(&finish);

/* …and run it for EXECUTION_TIME seconds per permutation list*/

while ((difftime(finish,start)) < EXECUTION_TIME)
time(&finish);
BX_TRY(BestXExerciserStop(handle));

}

158 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Analyzing the Report Programming Protocol Permutator and Randomizer Properties
Analyzing the Report

This section contains a report created by the example C program,
assuming that no errors occurred during program execution. The
individual sections of the report are explained in detail. All reports
produced by the PCI-X Protocol Permutator and Randomizer software
are set up like this, unless some sections are suppressed by report
property settings. The results in these reports could also be queried by
C functions.

Report of C-API Abbreviations The report property “Report of C-API abbreviations”
(BXPPR_REPORT_CAPI), was active during program execution. Therefore,
the C-API names of properties are given in each line. This information
can be used to easily find the properties in your C program.

The reports of completer-target, completer-initiator and requester-target
behavior permutations and their behavior permutations tables are not
considered in the example. These reports are similar to those of the
requester-initiator behavior permutations and the requester-initiator
behavior table.

NOTE The order of the report sections listed here is not exactly the same as in
the real PPR report. For the exact order, see “Report Listing” on

page 174.

Report Header
The report starts with a header containing the creation date and time,
followed by hardware information.

General Properties The general properties then follow. These are used to compute the
testing times and a series of pseudo random numbers.

PCI-X Protocol Permutator & Randomizer
======================================
Report generated on 18-Mar-2002, 15:05:05 h

Hardware Properties

HW Type .. E2929A_DEEP
Connection ... Online
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 159

Programming Protocol Permutator and Randomizer Properties Analyzing the Report
Refer to “Preparing for PPR Programming” on page 131.

Report Properties The report properties then follow. These are used to specify the content
of the report.

Refer to “Generating PPR Reports” on page 155.

Report of Block Permutations
Report of Requester-Intitiator Block

Permutation
This section of the report deals with the requester-initiator block
permutation. It shows which block and permutation properties are
specified and which variations are constrained to which values.

Generic Properties

Use RI Blk BXPPR_GEN_USE_RIBLK Yes
Use RI Beh BXPPR_GEN_USE_RIBEH Yes
Use RT Beh BXPPR_GEN_USE_RTBEH Yes
Use CI Beh BXPPR_GEN_USE_CIBEH Yes
Use CT Beh BXPPR_GEN_USE_CTBEH Yes
Algorithm BXPPR_GEN_ALGORITHM Perm
Preset BXPPR_GEN_PRESET Default
Level BXPPR_GEN_LEVEL Data
Bus Speed BXPPR_GEN_BUSSPEED 100002929
Bus Width BXPPR_GEN_BUSWIDTH 64
Seed BXPPR_GEN_SEED 0
Xfer clocks BXPPR_GEN_XFERCLKS 5
ADB Limitation BXPPR_GEN_ADBLIMITATION Yes

Report Properties

Capi BXPPR_REPORT_CAPI Yes
Contents BXPPR_REPORT_CONTENTS 50

Requester Initiator Block

Direction BXPPR_RIBLKPERM_DIRECTION ... read
Bus Address Lo BX_RIBLK_BUSADDR_LO 536870912
Bus Address Hi BX_RIBLK_BUSADDR_HI 805306368
Internal Address BX_RIBLK_INTADDR 0
Resource BX_RIBLK_RESOURCE DataMem
Block Size BXPPR_RIBLKPERM_BLOCKSIZE ... 1048576
Fill Gaps BXPPR_RIBLKPERM_FILLGAPS Yes
First Perm BXPPR_RIBLKPERM_FIRSTPERM ... 1
Start Offset BXPPR_RIBLKPERM_STARTOFFSET . 0
Size Limit BXPPR_RIBLKPERM_SIZELIMIT ... nolimit
Tuples BXPPR_RIBLKPERM_TUPLES 3
160 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Analyzing the Report Programming Protocol Permutator and Randomizer Properties
Permutation Results The following section shows the variation information and permutation
results.

It shows whether coverage is achieved.

Variation Information

Bus Cmd BXPPR_RIBLK_BUSCMD R = 3
permutated, 2 values = <MemReadDWord,MemReadBlock>
original list: <MemReadDWord,MemReadBlock,MemWrite,MemWriteBlock>

.. covered.

Byte Enables BX_RIBLK_BYTEN R = 19
permutated, 16 values =

<All,1,2,Word1,4,5,6,Byte3,8,9,10,Byte2,Word0,Byte1,Byte0,None>
.. covered.

Alignment BXPPR_RIBLK_ALIGN R = 11
permutated, 8 values = <0,1,2,3,4,5,6,7>

.. covered.

Number of Bytes BX_RIBLK_NUMBYTES R = 17
permutated, 16 values = <1,2,3,4,5,6,7,8,16,32,64,128,256,512,1024,4096>

.. covered.

Relaxed Ordering BX_RIBLK_RELAXORDER R = 1
fix = <Yes>

.. covered.

No Snoop BX_RIBLK_NOSNOOP R = 2
permutated, 2 values = <No,Yes>

.. covered.

Requester Initiator Block Result

Last Permutation BXPPR_RIBLKRES_LASTPERM 105
Actual Size BXPPR_RIBLKRES_ACTUALSIZE ... 256
Number of Gaps BXPPR_RIBLKRES_NUMGAPS 151
Number of Skipped Perms BXPPR_RIBLKRES_NUMSKIPPED ... 0
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 161

Programming Protocol Permutator and Randomizer Properties Analyzing the Report
Block Permutation Table The block permutation table shows the permutations to be executed.
Only a fraction of the tuples is given here. You can find a complete list of
all permutation tuples in “Report Listing” on page 174.

The columns contain the permutation number, the bus commands
(6 or 14) used, the byte enable, the alignment, the number of bytes
transferred with the permutation and the nosnoop bit.

Requester Initiator Block Variation

Number of Permutations 21318

| N
P | u N
e | m o
r | B A B S
m | y l y n
n | C t i t o
u | m e g e o
m | d n n s p

1 | 6 0 0 1 0
2 | 14 1 1 2 1
3 | 6 2 2 3 0
4 | 6 3 3 4 1
5 | 14 4 4 5 0
6 | 6 5 5 6 1
7 | 6 6 6 7 0
8 | 14 7 7 8 1
9 | 6 8 0 16 0
10 | 6 9 1 32 1
11 | 14 10 2 64 0
12 | 6 11 0 128 1
13 | 6 12 1 256 0
14 | 14 13 2 512 1
15 | 6 14 3 1024 0
16 | 6 15 4 4096 1
17 | 14 0 5 1 0
18 | 6 1 6 1 1
19 | 6 2 7 2 0

…

36 | 6 0 2 2 1
37 | 6 1 3 3 0
38 | 14 2 4 4 1
39 | 6 0 5 5 0
40 | 6 1 6 6 1
41 | 14 2 7 7 0
42 | 6 3 0 8 1
43 | 6 4 1 16 0
44 | 14 5 2 32 1
45 | 6 6 0 64 0
46 | 6 7 1 128 1
47 | 14 8 2 256 0
48 | 6 9 3 512 1
49 | 6 10 4 1024 0
50 | 14 11 5 4096 1

Printout ended due to user setting of contents
162 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Analyzing the Report Programming Protocol Permutator and Randomizer Properties
NOTE The PCI-X Protocol Permutation and Randomization software varies all
parameters simultaneously. If it varied only one parameter from one
permutation to the next while fixing the remaining, it would be possible
that parameters are not varied at all.

Another reason why the PCI-X PPR software changes all parameters
simultaneously is to achieve a good mix of test cases.

In the requester-initiator block variation list shown above, all block
properties are permutated independently according to their value lists.

All variation list lengths of the properties are prime numbers. If they
were not, the software would raise them up to the next unoccupied
prime number (for an explanation of how repetition lengths are
calculated, refer to “Generating Permutations” on page 123).

The repetition length R is the length between two permutations with
equivalent tuples. A block property has taken all values after R data
transfers. For example: Three data transfers are necessary to test three
blocksizes.

The number of data transfers required to cover all combinations of block
property values is calculated by multiplying the numbers of values of
each property. For example: To combine all address alignments with all
blocksizes, you need 11 × 17= 187 data transfers. To combine all address
alignments with all commands and blocksizes, you need 11 × 3 × 17 = 561
transfers.

The following table shows how many block permutations are required to
permutate the block properties (the tuples and the whole testing area),
as required by the example test design:

Tuple Repetition Lengths

(ALIGNMENT) 11

(BLOCKSIZE) 17

(COMMAND) 3

(BYTEN) 19

(NOSNOOP) 2

(ALIGNMENT, BLOCKSIZE,
COMMAND, BYTEN,
NOSNOOP)

11 × 17 × 3 × 19 × 2= 21318

R(BLOCK) Max = 21318
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 163

Programming Protocol Permutator and Randomizer Properties Analyzing the Report
Block Fitting List The blocks contained in the block permutation table must be arranged to
fit into the compound block. The compound blocksize (CBS) is
determined by the resources. For the example test, it is assumed to be
1MB.

Therefore, the algorithm sequentially steps through the block
permutation table and fits the individual permutations into the
compound block, regarding their alignment and size.

It proceeds by filling up the block, alternating from the start and from the
end of the block until all permutations are inserted. If some permutations
do not fit in, it terminates.

The goal is to fit in as many permutations as possible. The FILLGAPS
property can be set to enable the filling of gaps remaining between
blocks with additional block transfers. This ensures that the compound
block will be transferred completely.

For the example test, the algorithm can fit all blocks into the compound
block of 1MB.
164 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Analyzing the Report Programming Protocol Permutator and Randomizer Properties
The report then produces the Block Fitting List, which shows the
compound block resulting from the rearrangement of the example test.

RI Block Fitting List

PermNum | Start Addr End Addr Size Alignment Byten Command

1 | 20000000\h 20000000\h 1 0 0000\b MemReadDWord
2 | 20000001\h 20000002\h 2 1 0001\b MemReadBlock

fill | 20000001\h 20000002\h 2 (1) 1110\b MemReadDWord
4 | 20000003\h 20000006\h 4 3 0011\b MemReadDWord

fill | 20000003\h 20000006\h 4 (3) 1100\b MemReadDWord
8 | 20000007\h 2000000e\h 8 7 0111\b MemReadBlock

fill | 20000007\h 2000000e\h 8 (7) 1000\b MemReadDWord
fill | 2000000f\h 2000007f\h 113 (15) 0000\b MemReadDWord

9 | 20000080\h 2000008f\h 16 0 1000\b MemReadDWord
fill | 20000080\h 2000008f\h 16 (0) 0111\b MemReadDWord
fill | 20000090\h 20000100\h 113 (16) 0000\b MemReadDWord
13 | 20000101\h 20000200\h 256 1 1100\b MemReadDWord

fill | 20000101\h 20000200\h 256 (1) 0011\b MemReadDWord
35 | 20000201\h 20000201\h 1 1 1111\b MemReadBlock

fill | 20000201\h 20000201\h 1 (1) 0000\b MemReadDWord
14 | 20000202\h 20000401\h 512 2 1101\b MemReadBlock

fill | 20000202\h 20000401\h 512 (2) 0010\b MemReadDWord
69 | 20000402\h 20000402\h 1 2 1011\b MemReadDWord

fill | 20000402\h 20000402\h 1 (2) 0100\b MemReadDWord
15 | 20000403\h 20000802\h 1024 3 1110\b MemReadDWord

fill | 20000403\h 20000802\h 1024 (3) 0001\b MemReadDWord
103 | 20000803\h 20000803\h 1 3 0111\b MemReadDWord
fill | 20000803\h 20000803\h 1 (3) 1000\b MemReadDWord
16 | 20000804\h 20001803\h 4096 4 1111\b MemReadDWord
27 | 20000804\h 20000823\h 32 4 0111\b MemReadDWord

fill | 20000804\h 20000823\h 32 (4) 1000\b MemReadDWord
fill | 20000824\h 20000880\h 93 (36) 0000\b MemReadDWord

…

fill | 200fff82\h 200fff84\h 3 (2) 1101\b MemReadDWord
6 | 200fff85\h 200fff8a\h 6 5 0101\b MemReadDWord

fill | 200fff85\h 200fff8a\h 6 (5) 1010\b MemReadDWord
fill | 200fff8b\h 200fffff\h 117 (11) 0000\b MemReadDWord
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 165

Programming Protocol Permutator and Randomizer Properties Analyzing the Report
Summarizing the Results The results for coverage and testing time of the requester-initiator block
permutations are described as follows:

Coverage The following table shows the repetition length for each
tuple and whether it is covered after the Requester-Initiator Block Last
Permutation. Because the number of the last permutation is 105, the
testing goal for the BLOCK testing area is not achieved.

Testing Time In the example test, the block test is performed after
the 250000 dwords (=1MB compound block size) have been transferred,
that is after the 21318 block transfers in the example. Assuming an
average of 10 clock cycles for each of the 250000 data transfers, circa
2.5 s are needed for the data transfer (clock is 100 MHz, that is 1.0 ns per
clock cycle).

Tuple Repetition Length R Coverage

(ALIGNMENT) 11 yes

(BLOCKSIZE) 17 yes

(COMMAND) 3 yes

(BYTEN) 19 yes

(NOSNOOP) 2 yes

(ALIGNMENT, BLOCKSIZE,
COMMAND, BYTEN,
NOSNOOP)

11 × 17 × 3 × 19 × 2= 21318 no

R(BLOCK) Max = 21318 no

Testing Time Calculation Value

Total T(BLOCK) Data transfer time:

250000 × 10 clocks × 1.0 ns

2.5 s
166 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Analyzing the Report Programming Protocol Permutator and Randomizer Properties
Report of Requester-Initiator Behavior
Permutation
This section reports the specified requester-initiator permutation
parameters.

Variation Information and
Permutation Results

The following subsection shows the variation constraints for the
requester-initiator permutation and whether coverage is achieved.

It reports which behaviors of each group are permutated. Note that the
repetition length of each group is raised up to the next prime.

As for the block properties permutation, the algorithm used by the PPR
software ensures that all behaviors will have taken all their values at
least once after R data phases, where R is the corresponding repetition
length of the behavior tuples.

Requester Initiator Behavior Perm

First Perm BXPPR_BEHPERM_FIRSTPERM 1
Tuples BXPPR_BEHPERM_TUPLES 3

Variation Information

Group 0 HW Groups G6 R = 7
Queue : permutated, 2 values = <qa,qb>
Steps : fix = <0>
Req64 : permutated, 2 values = <No,Yes>
.. covered.

Group 1 HW Groups G8, G9 R = 5
ByteCount : permutated, 5 values = <33,64,72,128,4096>
.. covered.

Group 2 HW Groups G3 R = 11
Disconnect : permutated, 7 values = <1,2,3,4,5,6,7>
.. covered.

Group 3 HW Groups G1, G2, G4, G5 R = 3
Delay : permutated, 3 values = <100,200,300>
RelReq : fix = <2047>
.. covered.

Requester Initiator Behavior Result

Last Permutation BXPPR_BEHRES_LASTPERM 1155
Last tuples Permutation BXPPR_BEHRES_TUPLES_LASTPERM 385
Data BXPPR_BEHRES_DATA 1014783
Tuples Data BXPPR_BEHRES_TUPLES_DATA 338261
Runs BXPPR_BEHRES_RUNS 1
Tuples Runs BXPPR_BEHRES_TUPLES_RUNS 1
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 167

Programming Protocol Permutator and Randomizer Properties Analyzing the Report
In the example test design, the following variation parameters have been
specified for the requester-initiator behavior testing area: queue, steps,
req64, byte count, disconnect, delay and relreq (see “Permutations to be

Covered” on page 129).

Computing Repetition Lengths The repetition lengths are computed by the algorithm as described in
“Generating Permutations” on page 123.

To guarantee that all repetition lengths are distinct and have no common
factor, each individual length is raised up to the next distinct prime
number. This is necessary to prevent the algorithm from cycling through
permutations with equivalent tuples.

NOTE 2 is not used in this algorithm as a repetition length, even though it is a
prime number. This guarantees that only behavior pages of odd lengths
are generated (which is necessary for permutating behaviors against
blocks, see below).

The software first groups the behaviors and performs a complete
permutation within the group each behavior belongs to. Afterwards each
behavior is permutated through all of its possible values, similar to the
permutation of block properties.
168 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Analyzing the Report Programming Protocol Permutator and Randomizer Properties
Requester-Initiator Behavior
Permutation Table

After running the permutation algorithm, the behaviors are permutated
as shown in the following report section. Note that only permutated (not
fixed) behavior parameters are listed.

Requester Initiator Behavior Variation

Number of Permutations 1155

| D
| B i
| y s

P | t c
e | e o
r | Q C n D R
m | u o n e e
n | e u e l q
u | u n c a 6
m | e t t y 4

1 | 1 33 1 100 0
2 | 2 64 2 200 1
3 | 1 72 3 300 0
4 | 1 128 4 100 1
5 | 2 4096 5 200 0
6 | 1 33 6 300 1
7 | 1 64 7 100 0
8 | 2 72 1 200 1
9 | 1 128 2 300 0

10 | 1 4096 3 100 1
11 | 2 33 4 200 0
12 | 1 64 5 300 1
13 | 1 72 6 100 0
14 | 2 128 7 200 1
15 | 1 4096 1 300 0
16 | 1 33 2 100 1
17 | 2 64 3 200 0
18 | 1 72 4 300 1
19 | 1 128 5 100 0
20 | 2 4096 6 200 1
21 | 1 33 7 300 0
22 | 1 64 1 100 1
23 | 2 72 2 200 0
24 | 1 128 3 300 1
25 | 1 4096 4 100 0

…

43 | 1 72 1 100 0
44 | 2 128 2 200 1
45 | 1 4096 3 300 0
46 | 1 33 4 100 1
47 | 2 64 5 200 0
48 | 1 72 6 300 1
49 | 1 128 7 100 0
50 | 2 4096 1 200 1

Printout ended due to user setting of contents
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 169

Programming Protocol Permutator and Randomizer Properties Analyzing the Report
The list shows the algorithm’s operating principles. (It is limited to the
first 50 permutations (of 1155 overall)).

NOTE Permutations 26 to 42 are skipped in this printout.

Only the varying parameters are included. The length of the table
printout may be restricted by the report properties (50 lines are
reported).

Summarizing the Results The results for coverage and testing time of the requester-initiator block
permutations are described as follows:

Coverage In the example test, complete coverage is achieved.

The following table shows the repetition length for each tuple and
whether it is covered after the Requester-Initiator Behavior Last
Permutation. Thus the testing goal for the Behavior testing area is
achieved.

Testing Time IThe testing time can be calculated by the testing time
for the requester-initiator block permutations and the number of
requester-initiator behavior permutations.

Tuple Behaviors Repetition Length R Coverage

Group 0 Queue, Steps, Req64 7 yes

Group 1 ByteCount 5 yes

Group 2 Diconnect 11 yes

Group 3 Delay, RelReq 3 yes

R(All Groups) Max = 7 x 5 x 11 x 3 = 1155 yes

Testing Time Calculation Value

Total T Testing Time for RI Block
Permutations (= 2.5 s)

x

Number of Behavior Permu-
tations (=1155)

2887.5 s
170 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Analyzing the Report Programming Protocol Permutator and Randomizer Properties
Report of Requester-Initiator Block vs.
Requester-Initiator Behavior Permutation
The following lines in the report result from the permutation of
Alignment (block property) vs. Bytecount (behavior property).

Bytecount/Alignment Information

Length of bytecount list 5
Bytecount List: 33, 64, 72, 128, 4096
33 (32 bit): 9 9 9 9

(64 bit): 5 5 5 5 5 5 5 5
64 (32 bit): 16 17 17 17

(64 bit): 8 9 9 9 9 9 9 9
72 (32 bit): 18 19 19 19

(64 bit): 9 10 10 10 10 10 10 10
128 (32 bit): 32 33 33 33

(64 bit): 16 17 17 17 17 17 17 17
4096 (32 bit): 1024 1025 1025 1025

(64 bit): 512 513 513 513 513 513 513 513
All possible number of data phases:

5 8 9 10 16 17 18 19 32 33 512 513 1024 1025
Total number of different transfer lengths: 14

Period Byte Count: 89480\h
Period Iterations: 639

Minimum Byte Count to reach all alignments: 43938\h
Minimum Iterations to reach all alignments: 315

Minimum Byte count 43938\h reached after 316 iterations.

After 316 iterations possible alignments are

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30
,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,
58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,8
5,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,10
9,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,
After 316 iterations alignments not covered are
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 171

Programming Protocol Permutator and Randomizer Properties Further Options and Possibilities
Further Options and Possibilities

The Protocol Permutator and Randomizer software provides further
options and possibilities that were not covered by the example scenario
and therefore have not yet been explained.

Optimizing Testing Time The testing time can be optimized by taking the following into account:

• Keep the byte counts and the number of bursts small.

Very long bursts result in long data transfer times, even if they are
varied against each other or other parameters.

• Include short bursts in the variation list only if exactly these short
bursts are to be examined.

In most cases, short bursts are added to the block permutation
memory automatically in order to fill gaps, or to increase the number
of bursts to a prime number.

• Vary either byte counts or block size.

• Vary only behaviors of interest.

General Tips Regard the following general tips:

• Avoid adding exceptions, such as asserting system errors to
permutations, if the system under test is unable to handle them.

• If the target terminates with a disconnect, it is not guaranteed that a
burst with a desired length has been covered.

For the coverage computations, it is assumed that it is sufficient to
know that the target would have been ready for a burst of that length.

• The test cannot guarantee the coverage of errors due to combination
of PCI-X protocol errors and internal states of the device under test.

However, the test can be used to stress the device under test with the
same permutation sequences multiple times, while the device under
test independently passes different internal states.

Presetting Values To avoid unexpected program behavior, default values can be set. These
values are preset after initialization of the PCI-X Protocol Permutation
and Randomization software or parts of it by means of the ...Init
functions.

After initialization, the default values can be set with the ...DefaultSet
functions.
172 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Further Options and Possibilities Programming Protocol Permutator and Randomizer Properties
Byte Enable Variation Byte enables can be varied like the other parameters, but note that if
FILLGAPS is activated, block transfers may be added to ensure that all
byte enables were used after the compound block was transferred. In
this case, variations of other parameters may be used with value
variations which, perhaps intentionally, were not specified.

Uncovered Permutations If the coverage of permutated tuples is not achieved (although it is
required), the report will contain a hint. In most cases, increasing the
system resources will help.

If resources cannot be increased, you can try to take advantage of the
following properties provided by the PCI-X Protocol Permutation and
Randomization software:

• ...LASTPERM, which contains the number of the last permutation that
could be covered.

• ...FIRSTPERM, which allows the setting of the number of the
permutation where the algorithm should start.

These properties can be used to fill the different pages with behaviors or
blocks. The algorithm can be set to continue where the previous
invocation stopped.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 173

Programming Protocol Permutator and Randomizer Properties Report Listing
Report Listing

PCI-X Protocol Permutator & Randomizer

======================================

Report generated on 18-Mar-2002, 15:05:05 h

--

Hardware Properties

HW Type ... E2929A_DEEP
Connection .. Online

Generic Properties

Use RI Blk BXPPR_GEN_USE_RIBLK Yes
Use RI Beh BXPPR_GEN_USE_RIBEH Yes
Use RT Beh BXPPR_GEN_USE_RTBEH Yes
Use CI Beh BXPPR_GEN_USE_CIBEH Yes
Use CT Beh BXPPR_GEN_USE_CTBEH Yes
Algorithm BXPPR_GEN_ALGORITHM Perm
Preset BXPPR_GEN_PRESET Default
Level BXPPR_GEN_LEVEL Data
Bus Speed BXPPR_GEN_BUSSPEED 100002929
Bus Width BXPPR_GEN_BUSWIDTH 64
Seed BXPPR_GEN_SEED 0
Xfer clocks BXPPR_GEN_XFERCLKS 5
ADB Limitation BXPPR_GEN_ADBLIMITATION .. Yes

Report Properties

Capi BXPPR_REPORT_CAPI Yes
Contents BXPPR_REPORT_CONTENTS 50

Requester Initiator Block Variation
===================================

Requester Initiator Block

Direction BXPPR_RIBLKPERM_DIRECTION ... read
Bus Address Lo BX_RIBLK_BUSADDR_LO 536870912
Bus Address Hi BX_RIBLK_BUSADDR_HI 805306368
Internal Address BX_RIBLK_INTADDR 0
Resource BX_RIBLK_RESOURCE DataMem
Block Size BXPPR_RIBLKPERM_BLOCKSIZE ... 1048576
Fill Gaps BXPPR_RIBLKPERM_FILLGAPS Yes
First Perm BXPPR_RIBLKPERM_FIRSTPERM ... 1
Start Offset BXPPR_RIBLKPERM_STARTOFFSET . 0
Tuples BXPPR_RIBLKPERM_TUPLES 3
174 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Report Listing Programming Protocol Permutator and Randomizer Properties
Variation Information

Bus Cmd BXPPR_RIBLK_BUSCMD R = 3

permutated, 2 values = <MemReadDWord,MemReadBlock>

original list: <MemReadDWord,MemReadBlock,MemWrite,MemWriteBlock>
.. covered.

Byte Enables BX_RIBLK_BYTEN R = 19
permutated, 16 values =

<All,1,2,Word1,4,5,6,Byte3,8,9,10,Byte2,Word0,Byte1,Byte0,None>
.. covered.
Alignment BXPPR_RIBLK_ALIGN R = 11

permutated, 8 values = <0,1,2,3,4,5,6,7>

... covered.

Number of Bytes BX_RIBLK_NUMBYTES R = 17

permutated, 16 values = <1,2,3,4,5,6,7,8,16,32,64,128,256,512,1024,4096>
.. covered.

Relaxed Ordering BX_RIBLK_RELAXORDER R = 1
fix = <Yes>..

covered.

No Snoop BX_RIBLK_NOSNOOP R = 2
permutated, 2 values =

<No,Yes>.. covered.

RI Block Fitting List

PermNum | Start Addr End Addr Size Alignment Byten Command

1 | 20000000\h 20000000\h 1 0 0000\b MemReadDWord
2 | 20000001\h 20000002\h 2 1 0001\b MemReadBlock

fill | 20000001\h 20000002\h 2 (1) 1110\b MemReadDWord
4 | 20000003\h 20000006\h 4 3 0011\b MemReadDWord

fill | 20000003\h 20000006\h 4 (3) 1100\b MemReadDWord
8 | 20000007\h 2000000e\h 8 7 0111\b MemReadBlock

fill | 20000007\h 2000000e\h 8 (7) 1000\b MemReadDWord
fill | 2000000f\h 2000007f\h 113 (15) 0000\b MemReadDWord

9 | 20000080\h 2000008f\h 16 0 1000\b MemReadDWord
fill | 20000080\h 2000008f\h 16 (0) 0111\b MemReadDWord
fill | 20000090\h 20000100\h 113 (16) 0000\b MemReadDWord
13 | 20000101\h 20000200\h 256 1 1100\b MemReadDWord

fill | 20000101\h 20000200\h 256 (1) 0011\b MemReadDWord
35 | 20000201\h 20000201\h 1 1 1111\b MemReadBlock

fill | 20000201\h 20000201\h 1 (1) 0000\b MemReadDWord
14 | 20000202\h 20000401\h 512 2 1101\b MemReadBlock

fill | 20000202\h 20000401\h 512 (2) 0010\b MemReadDWord
69 | 20000402\h 20000402\h 1 2 1011\b MemReadDWord

fill | 20000402\h 20000402\h 1 (2) 0100\b MemReadDWord
15 | 20000403\h 20000802\h 1024 3 1110\b MemReadDWord

fill | 20000403\h 20000802\h 1024 (3) 0001\b MemReadDWord
103 | 20000803\h 20000803\h 1 3 0111\b MemReadDWord
fill | 20000803\h 20000803\h 1 (3) 1000\b MemReadDWord
16 | 20000804\h 20001803\h 4096 4 1111\b MemReadDWord
27 | 20000804\h 20000823\h 32 4 0111\b MemReadDWord

fill | 20000804\h 20000823\h 32 (4) 1000\b MemReadDWord
fill | 20000824\h 20000880\h 93 (36) 0000\b MemReadDWord
…

Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 175

Programming Protocol Permutator and Randomizer Properties Report Listing
fill | 200fff82\h 200fff84\h 3 (2) 1101\b MemReadDWord
6 | 200fff85\h 200fff8a\h 6 5 0101\b MemReadDWord

fill | 200fff85\h 200fff8a\h 6 (5) 1010\b MemReadDWord
fill | 200fff8b\h 200fffff\h 117 (11) 0000\b MemReadDWord

Requester Initiator Block Result

Last Permutation BXPPR_RIBLKRES_LASTPERM 105
Actual Size BXPPR_RIBLKRES_ACTUALSIZE ... 256
Number of Gaps BXPPR_RIBLKRES_NUMGAPS 151
Number of Skipped Perms BXPPR_RIBLKRES_NUMSKIPPED ... 0

Requester Initiator Block Variation

Number of Permutations 21318

| N

P | u N

e | m o

r | B A B S

m | y l y n

n | C t i t o

u | m e g e o

m | d n n s p

1 | 6 0 0 1 0

2 | 14 1 1 2 1

3 | 6 2 2 3 0

4 | 6 3 3 4 1

5 | 14 4 4 5 0

6 | 6 5 5 6 1

7 | 6 6 6 7 0

8 | 14 7 7 8 1

9 | 6 8 0 16 0

10 | 6 9 1 32 1

11 | 14 10 2 64 0

12 | 6 11 0 128 1

13 | 6 12 1 256 0

14 | 14 13 2 512 1

15 | 6 14 3 1024 0

16 | 6 15 4 4096 1

17 | 14 0 5 1 0

18 | 6 1 6 1 1

19 | 6 2 7 2 0

20 | 14 0 0 3 1

21 | 6 1 1 4 0

22 | 6 2 2 5 1

23 | 14 3 0 6 0
176 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Report Listing Programming Protocol Permutator and Randomizer Properties
24 | 6 4 1 7 1

25 | 6 5 2 8 0

26 | 14 6 3 16 1

27 | 6 7 4 32 0

28 | 6 8 5 64 1

29 | 14 9 6 128 0

30 | 6 10 7 256 1

31 | 6 11 0 512 0

32 | 14 12 1 1024 1

33 | 6 13 2 4096 0

34 | 6 14 0 1 1

35 | 14 15 1 1 0

36 | 6 0 2 2 1

37 | 6 1 3 3 0

38 | 14 2 4 4 1

39 | 6 0 5 5 0

40 | 6 1 6 6 1

41 | 14 2 7 7 0

42 | 6 3 0 8 1

43 | 6 4 1 16 0

44 | 14 5 2 32 1

45 | 6 6 0 64 0

46 | 6 7 1 128 1

47 | 14 8 2 256 0

48 | 6 9 3 512 1

49 | 6 10 4 1024 0

50 | 14 11 5 4096 1

Printout ended due to user setting of contents

Requester Initiator Behavior Variation

======================================

Requester Initiator Behavior Perm

First Perm BXPPR_BEHPERM_FIRSTPERM 1

Tuples BXPPR_BEHPERM_TUPLES 3
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 177

Programming Protocol Permutator and Randomizer Properties Report Listing
Variation Information

Group 0 HW Groups G6 R = 7

Queue : permutated, 2 values = <qa,qb>

Steps : fix = <0>

Req64 : permutated, 2 values = <No,Yes>

.. covered.

Group 1 HW Groups G8, G9 R = 5

ByteCount : permutated, 5 values = <33,64,72,128,4096>

.. covered.

Group 2 HW Groups G3 R = 11

Disconnect : permutated, 7 values = <1,2,3,4,5,6,7>

.. covered.

Group 3 HW Groups G1, G2, G4, G5 .. R = 3

Delay : permutated, 3 values = <100,200,300>

RelReq : fix = <2047>

... covered.

Requester Initiator Behavior Result

Last Permutation BXPPR_BEHRES_LASTPERM 1155

Last tuples Permutation BXPPR_BEHRES_TUPLES_LASTPERM 385

Data BXPPR_BEHRES_DATA 1014783

Tuples Data BXPPR_BEHRES_TUPLES_DATA . 338261

Runs BXPPR_BEHRES_RUNS 1

Tuples Runs BXPPR_BEHRES_TUPLES_RUNS 1
178 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Report Listing Programming Protocol Permutator and Randomizer Properties
Requester Initiator Behavior Variation

Number of Permutations 1155

| D

| B i

| y s

P | t c

e | e o

r | Q C n D R

m | u o n e e

n | e u e l q

u | u n c a 6

m | e t t y 4

1 | 1 33 1 100 0

2 | 2 64 2 200 1

3 | 1 72 3 300 0

4 | 1 128 4 100 1

5 | 2 4096 5 200 0

6 | 1 33 6 300 1

7 | 1 64 7 100 0

8 | 2 72 1 200 1

9 | 1 128 2 300 0

10 | 1 4096 3 100 1

11 | 2 33 4 200 0

12 | 1 64 5 300 1

13 | 1 72 6 100 0

14 | 2 128 7 200 1

15 | 1 4096 1 300 0

16 | 1 33 2 100 1

17 | 2 64 3 200 0

18 | 1 72 4 300 1

19 | 1 128 5 100 0

20 | 2 4096 6 200 1

21 | 1 33 7 300 0

22 | 1 64 1 100 1

23 | 2 72 2 200 0

24 | 1 128 3 300 1

25 | 1 4096 4 100 0

26 | 2 33 5 200 1

27 | 1 64 6 300 0

28 | 1 72 7 100 1
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 179

Programming Protocol Permutator and Randomizer Properties Report Listing
29 | 2 128 1 200 0

30 | 1 4096 2 300 1

31 | 1 33 3 100 0

32 | 2 64 4 200 1

33 | 1 72 5 300 0

34 | 1 128 6 100 1

35 | 2 4096 7 200 0

36 | 1 33 1 300 1

37 | 1 64 2 100 0

38 | 2 72 3 200 1

39 | 1 128 4 300 0

40 | 1 4096 5 100 1

41 | 2 33 6 200 0

42 | 1 64 7 300 1

43 | 1 72 1 100 0

44 | 2 128 2 200 1

45 | 1 4096 3 300 0

46 | 1 33 4 100 1

47 | 2 64 5 200 0

48 | 1 72 6 300 1

49 | 1 128 7 100 0

50 | 2 4096 1 200 1

Printout ended due to user setting of contents
180 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Report Listing Programming Protocol Permutator and Randomizer Properties
Bytecount/Alignment Information

Length of bytecount list 5

Bytecount List: 33, 64, 72, 128, 4096

33 (32 bit): 9 9 9 9

(64 bit): 5 5 5 5 5 5 5 5

64 (32 bit): 16 17 17 17

(64 bit): 8 9 9 9 9 9 9 9

72 (32 bit): 18 19 19 19

(64 bit): 9 10 10 10 10 10 10 10

128 (32 bit): 32 33 33 33

(64 bit): 16 17 17 17 17 17 17 17

4096 (32 bit): 1024 1025 1025 1025

(64 bit): 512 513 513 513 513 513 513 513

All possible number of data phases:

5 8 9 10 16 17 18 19 32 33 512 513 1024 1025

Total number of different transfer lengths: 14

Period Byte Count: 89480\h

Period Iterations: 639

Minimum Byte Count to reach all alignments: 43938\h

Minimum Iterations to reach all alignments: 315

Minimum Byte count 43938\h reached after 316 iterations.

After 316 iterations possible alignments are

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58
,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,8
6,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,11
0,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,

After 316 iterations alignments not covered are

--
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 181

Programming Protocol Permutator and Randomizer Properties Report Listing
Requester Target Behavior Variation

===================================

Requester Target Behavior

First Perm BXPPR_BEHPERM_FIRSTPERM 1

Tuples BXPPR_BEHPERM_TUPLES 3

Variation Information

Group 0 HW Groups G4 R = 1

DecSpeed : fix =

Ack64 : fix = <Yes>

... covered.

Group 1 HW Groups G1 R = 1

Initial : fix = <Accept>

Latency : fix = <3>

.. covered.

Group 2 HW Groups G2, G3 R = 1

Subseq : fix = <Accept>

SubseqPhase : fix = <0>

... covered.

Requester Target Behavior Result

Last Permutation BXPPR_BEHRES_LASTPERM 1

Last tuples Permutation BXPPR_BEHRES_TUPLES_LASTPERM 1

Requester Target Behavior Variation

Number of Permutations 1

<not permutated>

--
182 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Report Listing Programming Protocol Permutator and Randomizer Properties
Completer Initiator Behavior Variation

======================================

Completer Initiator Behavior

First Perm BXPPR_BEHPERM_FIRSTPERM 1

Tuples BXPPR_BEHPERM_TUPLES 3

Variation Information

Group 0 HW Groups G8 R = 1

Queue : fix = <Next>

.. covered.

Group 1 HW Groups G7 R = 1

ErrMsg : fix = <No>

.. covered.

Group 2 HW Groups G3 R = 1

Partition : fix = <No>

.. covered.

Group 3 HW Groups G1, G2, G4, G5 .. R = 1

Delay : fix = <1>

RelReq : fix = <2047>

... covered.

Group 4 HW Groups G6 R = 1

Steps : fix = <2>

Req64 : fix = <Yes>

... covered.

Completer Initiator Behavior Result

Last Permutation BXPPR_BEHRES_LASTPERM 1

Last tuples Permutation BXPPR_BEHRES_TUPLES_LASTPERM 1

Completer Initiator Behavior Variation

Number of Permutations 1

<not permutated>

Completer Target Behavior Variation

===================================

Completer Target Behavior

First Perm BXPPR_BEHPERM_FIRSTPERM 1

Tuples BXPPR_BEHPERM_TUPLES 3
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 183

Programming Protocol Permutator and Randomizer Properties Report Listing
Variation Information

Group 0 HW Groups G4 R = 1

DecSpeed : fix =

Ack64 : fix = <Yes>

SplitLatency : fix = <3>

.. covered.

Group 1 HW Groups G1 R = 1

Initial : fix = <Accept>

Latency : fix = <3>

... covered.

Group 2 HW Groups G2, G3 R = 1

Subseq : fix = <Accept>

SubseqPhase : fix = <0>

SplitEnable : fix = <Yes>

... covered.

Completer Target Behavior Result

Last Permutation BXPPR_BEHRES_LASTPERM 1

Last tuples Permutation BXPPR_BEHRES_TUPLES_LASTPERM 1

Completer Target Behavior Variation

Number of Permutations 1

<not permutated>

<End of PPR Report>
184 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Code Listing Programming Protocol Permutator and Randomizer Properties
Code Listing

WA RNING This program fragment writes data to the system memory. To run this
program in a real environment, a line that allocates the required memory
must be added.

#include <stdafx.h>
#include <xpciapi.h>
#include <pprx.h>
#include "SetupUtil.h"
#include <time.h>

#define EXECUTION_TIME 5

int main(int argc, char* argv[])

{

BX_TRY_VARS_NO_PROG;
// additional local variable declarations, here

bx_handletype handle;
time_t start, finish;
bx_int32 width, speed, lastperm, actualsize, i;

BX_TRY_BEGIN
{

/* Open the communication session to testcard on serial port
COM1 */

BX_TRY(BestXOpen(&handle, BX_PORT_RS232, BX_PORT_COM1));

/* Set the baud rate for the serial port */

BX_TRY(BestXRS232BaudRateSet(handle, BX_BD_57600));

/* Set up a block transfer for the testcard. */

/* ... */

/* Initialize PPR */

BX_TRY(BestXPprInit(handle));
BX_TRY(BestXPprGenDefaultSet(handle));

/* Set all RI ppr properties to their defaults */
BX_TRY(BestXPprRIDefaultSet(handle));

/* Set PPR generics for report handling, etc. */

BX_TRY(BestXStatusRead(handle, BX_STAT_BUSWIDTH, &width));
BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_BUSWIDTH, width));
BX_TRY(BestXStatusRead(handle, BX_STAT_BUSSPEED, &speed));
BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_BUSSPEED, speed));
BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_XFERCLKS, 5));
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 185

Programming Protocol Permutator and Randomizer Properties Code Listing
/* THIS IS JUST AN ESTIMATE */

BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_ALGORITHM,
BXPPR_GEN_ALGORITHM_PERM));

BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_LEVEL,
BXPPR_GEN_LEVEL_DATA));

BX_TRY(BestXPprGenSet(handle, BXPPR_GEN_ADBLIMITATION , 1));

BX_TRY(BestXPprRIBlkPermSet(handle,
BXPPR_RIBLKPERM_DIRECTION, BXPPR_RIBLKPERM_DIRECTION_READ));

BX_TRY(BestXPprRIBlkPermSet(handle,
BXPPR_RIBLKPERM_BLOCKSIZE, 0x100000)); // a 1M block

BX_TRY(BestXPprRIBlkPermSet(handle,
BXPPR_RIBLKPERM_BUSADDR_LO, 0x20000000));

BX_TRY(BestXPprRIBlkPermSet(handle,
BXPPR_RIBLKPERM_BUSADDR_HI, 0x30000000));

BX_TRY(BestXPprRIBlkPermSet(handle, BXPPR_RIBLKPERM_INTADDR,
0x0000));

BX_TRY(BestXPprRIBlkPermSet(handle, BXPPR_RIBLKPERM_FILLGAPS,
BX_YES)); // this is the default

/* Start filling the Block transfer memory at line 0 of 256
*/

BX_TRY(BestXPprRIBlkPermSet(handle,
BXPPR_RIBLKPERM_STARTOFFSET, 0)); //this is the default

/* Define the permutation lists. These lists of values will
be permutated against each other */

/* The permutated BUSCMD values are dependent on
/* BXPPR_RIBLKPERM_DIRECTION * /

BX_TRY(BestXPprRIBlkListSet(handle, BXPPR_RIBLK_BUSCMD, \
"BX_RIBLK_BUSCMD_MEM_READDWORD,BX_RIBLK_BUSCMD_MEM_READBLOCK,
BX_RIBLK_BUSCMD_MEM_WRITE, BX_RIBLK_BUSCMD_MEM_WRITEBLOCK"));

BX_TRY(BestXPprRIBlkListSet(handle, BXPPR_RIBLK_NOSNOOP,
"0,1"));

BX_TRY(BestXPprRIBlkListSet(handle, BXPPR_RIBLK_ALIGN,
"0,1,2,3,4,5,6,7"));

BX_TRY(BestXPprRIBlkListSet(handle, BXPPR_RIBLK_BYTEN,
"0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15"));

BX_TRY(BestXPprRIBlkListSet(handle, BXPPR_RIBLK_NUMBYTES,
"1,2,3,4,5,6,7,8,16,32,64,
128,256,512,1024,4096"));

BX_TRY(BestXPprRIBehPermDefaultSet(handle));

BX_TRY(BestXPprRIBehListSet(handle, BX_RIBEH_BYTECOUNT,
"33, 64, 72, 128, 4096"));
186 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Code Listing Programming Protocol Permutator and Randomizer Properties
BX_TRY(BestXPprRIBehListSet(handle, BX_RIBEH_REQ64, "0,1"));
BX_TRY(BestXPprRIBehListSet(handle, BX_RIBEH_QUEUE,

"BX_RIBEH_QUEUE_A, BX_RIBEH_QUEUE_B"));

BX_TRY(BestXPprRIBehListSet(handle, BX_RIBEH_DISCONNECT,
"1,2,3,4,5,6,7"));

BX_TRY(BestXPprRIBehListSet(handle, BX_RIBEH_DELAY,
"100,200,300"));

BX_TRY(BestXPprRIBehPermSet(handle, BXPPR_BEHPERM_FIRSTPERM,
1));

/* Sets report properties: Include C-API abbreviation in the
report that should have a length of 50 lines. */

BX_TRY(BestXPprReportSet(handle, BXPPR_REPORT_CAPI, BX_YES));

BX_TRY(BestXPprReportSet(handle, BXPPR_REPORT_CONTENTS, 50));

/* Since we know we are creating a very large permutation
list, we will need to iterate */

/* Several times to complete all permutations. */
/* How many permutations are we doing? */

BX_TRY(BestXPprRIBlkResultGet(handle,BXPPR_RIBLKRES_LASTPERM,
&lastperm));

BX_TRY(BestXPprRIBlkResultGet(handle,
BXPPR_RIBLKRES_ACTUALSIZE,
&actualsize));

printf("lastperm = %ld actualsize = %d\n", lastperm,
actualsize);

for (i=1; i < lastperm; i+=actualsize)
{

char num[6];
char reportname[80] = "c:\\temp\\PprReport";

/* Remember that the block transfer memory can only hold
256 entries. We are creating a much larger permutation
set, so we must iterate this to run all different
combinations */

BX_TRY(BestXPprRIBlkPermSet(handle,
BXPPR_RIBLKPERM_FIRSTPERM, i));

BX_TRY(BestXPprRIBlkResultGet(handle,
BXPPR_RIBLKRES_ACTUALSIZE,
&actualsize));

/* Program the testcard */

BX_TRY(BestXPprProg(handle));

/* This is required to program the card */

BX_TRY(BestXExerciserProg(handle));
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 187

Programming Protocol Permutator and Randomizer Properties Code Listing
/* Create a report file name */

strcat (reportname, _itoa(i, num, 10));
strcat (reportname, ".txt");

/* Generate a report file for each new permutation
(iteration */

BX_TRY(BestXPprReportFile(handle, reportname));

time(&start);

BX_TRY(BestXExerciserRun(handle)); //start the exerciser …

time(&finish);

//…and run it for EXECUTION_TIME seconds per permutation list

while ((difftime(finish,start)) < EXECUTION_TIME)

time(&finish);

BX_TRY(BestXExerciserStop(handle));

} // end of for loop

BX_TRY(BestXClose(handle));
}

BX_TRY_CATCH
{

// cleanup, if necessary
printf("%s\n", BestXErrorStringGet(BX_TRY_RET));

}
return 0;

}

188 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Synchronizing the Environment

The Agilent E2929A/B testcard provides application interfaces for
exchanging information between the testcard and the test environment
during the run time of the test application.

The following figure shows the components of the PCI-X ASIC and the
interfaces to the environment.

The following sections provide information about synchonizing to the
environment.

• “Card Status Reporting” on page 191 gives information about using
the testcard’s status register.

This information is useful for evaluating test results or for debugging
and evaluating errors.

• “Generic Testcard Setup and Power-Up Control” on page 194 shows
how to control the testcard’s power-up and reset behavior.

This information is useful for tests focusing on the power-up behavior
of the system under test. It is also for when the testcard hangs and you
need to unlock it.

PCI-X I/OPCI-X I/O

PCI-X ExerciserPCI-X Exerciser

PCI-X AnalyzerPCI-X Analyzer

Trigger
I/O

Trigger
I/O

Power UpLoaderPower UpLoader

Device Bus
Interface

Device Bus
Interface

Trace Memory

Trigger I/O

Data Memory
Ex

er
ci

se
rI

nf
o

Re
gi

st
er

ed
PC

IS
ig

na
ls

Data Memory

In
te

rn
al

D
ev

ic
e

B
us

Co
nd

iti
on

al
St

ar
t

Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 189

Synchronizing the Environment
• “Programming the Mailbox” on page 195 shows how data can be
exchanged between applications running on the control PC and the
system under test.

• “Programming the Trigger I/O” on page 199 shows how to use the
trigger input and output lines.

• “Programming the Display” on page 203 shows how to write data to
the 7-segment display.
190 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Card Status Reporting Synchronizing the Environment
Card Status Reporting

The testcard status register can be used, for example, to evaluate the test
result after the test run, and to debug and evaluate errors.

You can read the card status register for the following information:

• Data compare errors

• System and parity errors

• Initiator and target aborts

• Asserted interrupts

• Information about the test status

• The state of DEVSEL# (bit 0), STOP# (bit 1), and TRDY# (bit 2) during
the rising edge of RST#

• The piggyback ID

• The current state of the trigger I/O pins

• The state of the hardware dip switch

• The bus mode (PCI or PCI-X)

• The setting of the ‘invisible’ hardware jumper on the board

• Bus width and bus speed

• The current status of the PCI/PCI-X bus reset signal

• Information about whether the PCI-X bus has been reset since the last
check

For details, please refer to “bx_statustype” in the Agilent E2929A/B Opt.

320 C-API/PPR Programming Reference.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 191

Synchronizing the Environment Card Status Reporting
How to Access the Card Status Register
Reading the Testcard Status To read the testcard status, you can use the C-API call BestXStatusRead.

The following figure shows the testcard status register layout
(offset 0x52):

Programming Steps The testcard status register can be accessed as follows:

1 Read a specific bit of the testcard status register with
BestXStatusRead.

2 Clear a specific bit of the testcard status register with
BestXStatusClear to ensure a specific register condition.

15:12

11

10

9

8

7:4

3

2

1

0

Reserved

BX_STAT_TRC_TRIGGER

BX_STAT_TRC_RUNNING

BX_STAT_OBS_ERR

BX_STAT_SPLIT_FAIL

BX_STAT_TEST

BX_STAT_MABORT

BX_STAT_ERR_SERR

BX_STAT_ERR_PERR

BX_STAT_CMP_FAIL
192 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Card Status Reporting Synchronizing the Environment
NOTE Only some of the status register properties can be cleared. For details,
please refer to “bx_statustype” in the Agilent E2929A/B Opt. 320 C-

API/PPR Programming Reference.

Example for Accessing the Card Status
Register

Task Poll the status register by using the C-API to:

• Detect whether the Analyzer is running.

• Query and clear interrupts.

Implementation /* Detect whether the Analyzer is running */

BX_TRY(BestXStatusRead(handle, BX_STAT_TRC_RUNNING, &trcstat));
if (trcstat)

printf("Analyzer running\n");

/* Query the interrupt */
BX_TRY(BestXStatusRead(handle, BX_STAT_INTB, &val));
printf("the value of the number.. before %d\n",val);

/* Clear the interrupt */
BX_TRY(BestXStatusClear(handle, BX_STAT_INTB));
BX_TRY(BestXStatusRead(handle, BX_STAT_INTB, &val));
printf("the value of the number.. after %d\n", val);
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 193

Synchronizing the Environment Generic Testcard Setup and Power-Up Control
Generic Testcard Setup and
Power-Up Control

The following figure shows all functions used to program the power-up
and reset behavior of the testcard. The figure also displays all memories
controlled by these functions.

Standard
Database

Board
Properties

Testcard

Host Storage

Power Up
Database

WritePUtocard Write tocard

B
es

tX
A

llD
ef

au
ltS

et

BestXBoardSet

BestXBoardGet

BestXBoardProgBestXPUProg

BestXBoardRead

BestXBoardReset

BestXExerciserProg

HW/SW
connection

System
Boot

Decoder
Space and

Configuration

Settings
194 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Mailbox Synchronizing the Environment
How to Program Generic Testcard
Properties and Power-Up Control

Programming Options The power-up control of the Exerciser and Analyzer testcard allows the
following options:

• Setting properties to the host

• Setting properties to the testcard

Setting Properties to the Host To set properties on the host, you can:

• Set all properties on the host to default values with
BestXAllDefaultSet. No direct testcard access is done.

• Set board properties with BestXBoardDefaultSet and BestXBoardSet.

Setting Properties to the Testcard To set properties to the testcard, you can:

• Store the current settings of the configuration space including
decoder settings to the power up database with BestXPUProg. With
the next power-up the testcard is initialized with these settings.

• Store the non-volatile configuration space content into the testcard
with BestXExerciserProg.

• Use the current board settings on the host storage as current settings
by loading them to the standard database with BestXBoardProg. To
read settings, use BestXBoardRead.

• To issue a board reset, use BestXBoardReset.

Programming the Mailbox

The mailbox of the Agilent E2929A/B testcard allows communication
between a program running on the system under test and a program
running on an external control PC. Communication to the control PC is
done via either the control interface, RS-232 or the Fast Host Interface
(the PCI bus can also be used as the control interface if the control PC is
simultaneously the system under test).
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 195

Synchronizing the Environment Programming the Mailbox
The mailbox consists of two 32-bit registers, one Read register, and one
Write register. This enables full duplex operation. Each register is
equipped with a flag that is set when data is written into the register, and
reset if the register is read.

The figure below shows the principle of the mailbox:

The mailbox can be accessed by:

• Functions provided by the C-API

• Direct PCI-X access, that is, by a programmable address range in
memory space, or I/O space, or configuration space

The flags are held in the mailbox status register.

Access by Functions The mailbox can be accessed by using the mailbox functions either from
the control PC or from the system under test.

Direct PCI-X Access to the Mailbox The mailbox registers are located in the private section of the
Agilent E2929A/B testcard’s configuration space. They can be read or
written by using configuration commands. The mailbox register
addresses are shown in the table below.

An access to the lowest byte of each register generates an interrupt that
can be used to inform the communication partner about the access. If
this is used, the lowest byte should be accessed either simultaneously
with or directly after access to the other bytes.

Control PC

Internal
Resources

Exerciser and Analyzer Card

Control
Interface

Mailbox

Write
Register

Read
Register

µP

Host Bridge System
Memory

System Under Test

Running Application

Flag

Flag

Running Application

PCI-X Bus
196 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Mailbox Synchronizing the Environment
Mailbox Status Register The following table shows the mailbox status register in the
configuration space:

Offset Config Bits Type Operation Meaning

4C\h [31:0] RW Conf. Read Reads the mailbox.

Conf. Write Writes to the mailbox.

50\h 0 RO Conf. Read Flag of the mailbox
write register:

0 = mailbox empty,
write possible

1 = don’t write, mailbox
contains data

1 RW Conf. Read Flag of the mailbox read
register:

0 = mailbox is empty

1 = mailbox contains
data

Note: If you read the
mailbox via PCI, reset
this flag by writing a 1
to this bit.

Conf. Write Generates an interrupt
for the on-board CPU.
This informs the CPU
that the mailbox
register has been read
and clears the flags.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 197

Synchronizing the Environment Programming the Mailbox
How to Program the Mailbox
The following figure shows the available mailbox functions and the
application:

Programming Steps for Access via
PCI-X Bus

To access the mailbox via PCI-X bus, the following steps are required:

1 Identify the testcard.

Use BestXDevIdentifierGet.

Because multiple PCI-X testcards can be plugged into the system
under test, the Agilent E2929A/B testcard needs to be identified for
mailbox access.

2 To write data to the mailbox via the PCI-X bus, use
BestXPCICfgMailboxSendRegWrite.

This function automatically checks the status flag. Unread data will
not be overwritten.

If the mailbox contains unread data, first read the data to reset the flag
with BestXPCICfgMailboxReceiveRegRead.

Programming Steps for Access via
Control PC

To access the mailbox via the control PC:

� Send and receive data using the control interface.

Use BestXMailboxSendRegWrite and BestXMailboxReceiveRegRead
respectively.

Control PC

Internal
Resources

Exerciser and Analyzer Card

Control
Interface

Mailbox

Write
Register

Read
Register

µP

Host Bridge System
Memory

System Under Test

Running Application

Flag

Flag

Running Application

BestXPCICfgMailboxSendRegWrite()

BestXPCICfgMailboxReceiveRegRead()

BestXMailboxSendRegWrite()

BestXMailboxReceiveRegRead()

PCI-X Bus
198 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Trigger I/O Synchronizing the Environment
Example for Programming the Mailbox
The following code fragments give examples of the two ways of
accessing the mailbox:

Task Write data to the mailbox via the PCI-X bus.

Implementation /* Identify the testcard and write data to the mailbox until the

flag indicates that data has been written successfully. */

BX_TRY(BestXDevIdentifierGet(0x103C, 0x2929, 0, &devid));

do {
BX_TRY(BestPCICfgMailboxSendRegWrite(devid, data, &status));

} while(status == 0);

Task Read data from the mailbox via the control PC.

Implementation /* Read from the mailbox until valid data can be read from the
mailbox. If the status bit is set, previously unread "mail" is
returned as the value. */

do {
BX_TRY(BestXMailboxReceiveRegRead(handle, &data, &status));

} while(status == 0);

Programming the Trigger I/O

The Agilent E2929A/B testcard provides four trigger-in and trigger-out
signals.

Trigger-In The trigger-in pins are always enabled.

They can be used to:

• Synchronize the traffic generation of the testcard on an external
trigger event.

• Synchronize multiple testcards among themselves.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 199

Synchronizing the Environment Programming the Trigger I/O
Trigger-Out The trigger-out pins need to be enabled before they can be used. Each
trigger-out line can be programmed as as either input, open-drain output,
or totem-pole output.

The trigger-out pins can be used to:

• Trigger an external ocilloscope or logic analyzer on the following
events:

– On a data miscompare

– On a protocol violation

– When the built-in analyzer triggers,

– On a particular exerciser event

• Trigger other testcards on the involvement of this testcard in a
particular transaction.

Trigger I/O Configuration The input and output pins are configured as follows:

To set up the trigger I/O, you have to enable the outputs and select the
trigger output source.

How to Program the Trigger I/O
Programming Steps To program the trigger I/O:

1 Enable the trigger output(s) to be used. Use BestXBoardSet and set
the BX_BOARD_TRIGIO<n>_MODE property to the required value
(open-drain or totem-pole output), where <n> means the trigger
output(s) 0 … 3.

NOTE To disable a specific trigger output, set the respecitive
BX_BOARD_TRIGIO<n>_MODE property to input.

MUX
Trigger OUT3

Trigger OUT2

Trigger OUT1

Trigger OUT0

Exerciser Event

DataCompareError

Protocol Violation

Trigger Sequencer
200 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Trigger I/O Synchronizing the Environment
2 After you have enabled the trigger output(s), select the trigger output
source.

Use BestXBoardSet to map the trigger-out signal(s) to internal
signal(s) (trigger sequencer signal, protocol error, data compare error
or exerciser event) by setting the BX_BOARD_TRIGIO<n>_OUT
property.

By default, the input/output pins are mapped as follows:

3 Write the board properties to the testcard with BestXBoardProg.

4 If you selected an exerciser event as trigger output source:

– Specify the event and the exact location within this event.

Use BestXExerciserGenSet and set the generic exerciser properties
BX_EGEN_TRIG_SOURCE and BX_EGEN_TRIG_NUM to the
required values.

– Write the exerciser generic properties to the testcard with
BestXExerciserProg.

5 Depending on the selected source, run the trace memory or the
exerciser of the testcard, or both:

– If you selected an exerciser event and/or a data compare error as
output source, use BestXExerciserRun.

– If you selected a trigger sequencer signal and/or a protocol error as
output source, use BestXTraceRun.

Trigger Serquencer -> Out0

Protocol Error -> Out1

Data Compare Error -> Out2

Exerciser Event -> Out3
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 201

Synchronizing the Environment Programming the Trigger I/O
Example for Programming the Trigger I/O
Task Set up the E2929A so that it generates a trigger output on the fourth pin

during the second block transfer.

Implementation ##include <xpciapi.h>

int main(int argc, char* argv[])
{

BX_TRY_VARS_NO_PROG;

/* additional local variable declarations, here */
bx_handletype handle;

BX_TRY_BEGIN
{

BX_TRY(BestXOpen(&handle, BX_PORT_RS232, BX_PORT_COM1));
BX_TRY(BestXRS232BaudRateSet(handle, BX_BD_57600));
BX_TRY(SetupForTriggerIO(handle));

/* enable trigger out 3 and set the output to totem pole */

BX_TRY(BestXBoardSet(handle, BX_BOARD_TRIGIO3_MODE,
BX_BOARD_TRIGIO_MODE_TOTEMPOLE));

/* connect an exerciser event to trigger out 3 */

BX_TRY(BestXBoardSet(handle, BX_BOARD_TRIGIO3_OUT,
BX_BOARD_TRIGIO_OUT_TRIGSOURCE));

BX_TRY(BestXBoardProg(handle));

/* specify that the trigger output is asserted at the start
of the second requester-initiator block */

BX_TRY(BestXExerciserGenSet(handle, BX_EGEN_TRIG_SOURCE,
BX_EGEN_TRIG_SOURCE_RIBLK));

BX_TRY(BestXExerciserGenSet(handle, BX_EGEN_TRIG_NUM, 1));

BX_TRY(BestXExerciserProg(handle));
BX_TRY(BestXExerciserRun(handle));
BX_TRY(BestXClose(handle));

}

BX_TRY_CATCH
{

// cleanup, if necessary
printf("%s\n", BestXErrorStringGet(BX_TRY_RET));

}

BX_ERRETURN(BX_TRY_RET);

}

202 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Programming the Display Synchronizing the Environment
Programming the Display

Programming Steps To write a value or a string to the 7-segment display, the following steps
are required:

1 Before writing values to the display, ensure that the LED display mode
is set to “user mode”.

To verify this mode, read the board property BX_BOARD_DISPLAY with
BestXBoardGet. If BX_BOARD_DISPLAY_USER is set, proceed with step
two. Otherwise, set this property value with BestXBoardSet.

2 To write a value to the LED display, use BestXDisplayWrite. To write a
string to the 7-segment display, use BestXDisplayStringWrite.
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 203

Synchronizing the Environment Programming the Display
Example for Programming the Display
Task Write “Hello World” to the 7-segment display.

Implementation #include "stdafx.h"
#include "xpciapi.h"

int main(int argc, char* argv[])
{

BX_TRY_VARS_NO_PROG;

/* Enter additional local variable declarations here */
bx_handletype handle;

BX_TRY_BEGIN
{

/* Open the communication session to testcard, initialize */
/* internal structures */

BX_TRY(BestXOpen(&handle, BX_PORT_RS232, 1));

/* If using RS232, set baud rate: */
BX_TRY(BestXRS232BaudRateSet(handle, BX_BD_57600));

/* Insert here your C-API calls */
/* For example:*/
/* Write “Hello World” to the display.*/
int i;

for (i=0;i<10;i++)

{
BX_TRY (BestXDisplayStringWrite(handle, "HEL-"));
BX_TRY (BestXDisplayStringWrite(handle, "HEL\\"));
BX_TRY (BestXDisplayStringWrite(handle, "HEL|"));
BX_TRY (BestXDisplayStringWrite(handle, "HEL/"));

}

/* Close the session to deallocate memory. */
BX_TRY(BestXClose(handle));

}

BX_TRY_CATCH
{

printf(BestXErrorStringGet(BX_TRY_RET));
/* cleanup, if necessary */

}
return 0;

}

204 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Index
Index

A

Accumulated Error Register 91
Algorithms

Permutation 131
Alignment 136
Application Interfaces

Programming 189
Arbitration Algorithm

Automatical 68
Constant 69
Incremental 70
Random 71

Automatical Arbitration
Arbitration Algorithm 68

B

Basic Terms 123
Behavior Memory

Completer-Target 48, 57
Requester-Initiator 35

Behavior of Block Transfers
Example 39
Programming 35
Programming Steps 38

Benefits
PPR Software 21

Block 134
Permutation Properties 134
Variation Parameters 136

Block Permutation Properties
Block Permutation Properties 134
Bus Address 135
Compound Block Size (CBS) 135
Fill Gaps 135
First Permutation Number 135
Internal Address 135
Resource 135
Size Limit 136
Start Offset 136
Tuples 136

Block Permutations
Report Section 160

Block Transfers
Example 32
Programming Steps 31

Bus Address
Block Permutation Properties 135

Bus Commands 136
Byte Enable Variation 173
Byte Enables 137

C

C Programming Libraries 13
Calculations of Coverage 138
C-API

Generic Functionality 14
Card Status

Reporting 191
Card Status Register

Contents 191
Example 193

Card Status Register Access
Programming Steps 192

CBS (= Compound Block Size) 135
Completer-Initiator Behavior

Example 60
Programming 57
Programming Steps 59

Completer-Initiator Behavior Permutations
Programming 150

Completer-Initiator Behaviors
Memory Design 50, 59

Completer-Initiator Device
Programming the Exerciser 55

Completer-Target Behavior
Example 50
Programming 48
Programming Steps 49

Completer-Target Behavior Memory 48, 57
Completer-Target Behavior Permutations

Programming Steps 148
Completer-Target Device

Programming the Exerciser 40
Components

PCI-X ASIC 189
Performance Sequencer 111
Trigger Sequencer 96

Compound Block 134
Compound Block Size

Block Permutation Properties 135
Config Read Access 46
Config Write Access 46
Configuration

Trigger I/O 200
Configuration Space

Programming 45
Setting the Register Mask 45
Setting the Register Value 45

Connection
Programming Steps 18

Constant Arbitration
Arbitration Algorithm 69

Contributions
of the PPR Software 120

Controlled Protocol Corner Cases
Creating 21

Counter
Performance 111

Coverage 125
Calculations 138
Completer-Initiator Behavior 150
Completer-Target Behavior 147
Requester-Initiator Behavior 143
Requester-Initiator Block
Permutations 137
Requester-Target Behavior 153
Uncovered Permutations 173

Creating Controlled Protocol Corner Cases
Benefit 21

D

Data Alignment
Data Memory 81

Data Generator
Bit Assignment 74
Example 75
Features 73
Programming Steps 75
Programming,Programming

Data Generator 73
Properties 73

Data Memory
Data Alignment 81
Example 83
Programming 81
Programming Steps 83

Data-Integrity Testing
Benefit 21

Decoder
Example 44
Programming Steps 43

Decoders Linked to the Configuration
Space Header 42
Detailed Report

Benefit 22
Deterministic and Reproducible Tests

Benefit 22
Directory Structure 13
Disconnect (Requester-Initiator
Behavior) 36
Documentation Overview 9
Downloading Settings to the Testcard

Exerciser Programming 27
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 205

Index
E

Emulating Typical Peripheral Traffic
Benefit 21

Environment
Synchronizing 189

Error Checking
Handle-Based 16
Non-Handle-Based 16

Error Register
Contents 90
Design 91

Errors Injection
Example 80
Programming 76
Programming Steps 78

Example
Behavior of Block Transfers 39
Block Transfers 32
Card Status Register 193
Completer-Initiator Behavior 60
Completer-Target Behavior 50
Data Generator 75
Data Memory 83
Decoder 44
Errors Injection 80
Generating PPR Reports 157
Generic Requester-Initiator
Properties 30
Generic Requester-Target Properties 63
Modifying the Configuration Space 47
Pattern Terms 95
PCI-X Interrupts 87
PPR Administration 133
PPR Test Setup 133
Programming CI Behavior
Permutations 152
Programming CT Behavior
Permutations 149
Programming Generic Completer-Target
Properties 53
Programming Requester-Initiator Block
Permutations 141
Programming Requester-Target
Behavior Permutations 155
Programming the Mailbox 199
Programming the Performance
Sequencer 115
Protocol Observer 93
Requester-Target Behavior 65
Running a PPR Test 157
Scheduling Block Transfers 72
Scheduling Split Completions 72
Split Completion Decoder 63
Split Condition 54
Test Design 128
Trace Memory 106
Trigger Sequencer 100

Example for Generating Sequences 35
Exerciser

Downloading Settings to the

Testcard 27
Running 27

Expansion ROM
Programming 80

F

Fast Host Interface Port
Initialization 18

Feedback Counter
Enable Condition 97
Preload Condition 98
Trigger Sequencer 99

Fill Gaps
Block Permutation Properties 135

First Error Register 91
First Permutation Number

Block Permutation Properties 135
Fitting List

Master Block 164
Functional Test Phase 118
Functionality

C-API 14
PPR 15

G

Gaps 135
General PPR Properties

Report Section 159
Generating

Permutations 123
Generating PPR Reports

Example 157
Generating Sequences 35

Example 35
Generic Completer-Initiator Properties

Programming 55
Generic Completer-Target Properties

Programming 52
Programming Steps 52

Generic Requester-Initiator Properties
Example 30
Programming 29
Programming Steps 29

Generic Requester-Target Properties
Example 63
Programming 61

H

Handle Initialization 17
Handle-Based Error Checking 16

I

Incremental Arbitration
Arbitration Algorithm 70

Initialization
Fast Host Interface Port 18
PCI-X Port 17
Programming Steps 18
RS-232 Serial Interface 17
USB Port 17

Internal Address
Block Permutation Properties 135

Interrupt
Status Register 86

Interrupt Status Register 86

L

Libraries
for C Programming 13

M

Mailbox
Status Register 197

Mailbox Access via Control PC 198
Mailbox Access via PCI-X Bus 198
Mask

of Rules 90
Master Block

Fitting List 164
Permutation Table (Example) 162

Memory Design
Completer-Initiator Behaviors 59
Completer-Target Behaviors 50
Requester-Intitiator Behaviors 38
Requester-Intitiator Block Transfers 32
Requester-Target Behaviors 65

Modifying the Configuration Space
Example 47
Programming Steps 45

N

Next State 97
No Snoop 137
Non-Handle-Based Error Checking 16

O

Operation Principles 121
Optimizing Testing Time 172
Overview

Documentation 9

P

Parameters 123
Pattern Terms

Example 95
Programming 94
Programming Steps 94
Trigger Sequencer 100
Using 94
206 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Index
PCI-X ASIC
Components 189

PCI-X Exerciser
Programmable Components 23
Programming Concept 23

PCI-X Interrupts
Example 87

PCI-X Port
Initialization 17

PCI-X Protocol Behavior Permutations
within Programmable Constraints

Benefit 22
PCI-X Protocol Permutation and
Randomizer

Functionality 15
Performance Measurement 114

Programming Steps 114
Performance Sequencer

Components 111
Programming 111

Performance Sequencer Memory
Programming Model 113

Performing Parameter Permutations 122
PERM 131
Permutating Algorithm 131
Permutation Results

Requester-Initiator Report Section 167
Permutation Table 124
Permutations 123

Generating 123
Platform-Dependence 14
Power-Up Behavior

Programming 194
Power-Up Control

Programming Options 195
PPR

Background Information 117
Functionality 15

PPR Administration 131
Example 133
Programming Steps 132

PPR Software
Benefits 21
Contributions 120

PPR Test
Running 157

PPR Test Run
Programming Steps 157

PPR Test Setup 131
Example 133
Programming Steps 132

Predictable Testing Time
Benefit 22

Presetting Values 172
Program Header 127
Programmable Behaviors Regarding
Decoders 44

Programmable Components
PCI-X Exerciser 23

Programmable Constraints
for PCI-X Protocol Behavior
Permutations 22

Programmable Decoder Properties 43
Programmable Memories 121
Programming

Application Interfaces 189
Behavior of Block Transfers 35
Completer-Initiator Behavior 57
Completer-Initiator Behavior
Permutations 150
Completer-Target Behavior 48
Configuration Space 45
Data Memory 81
Errors Injection 76
Expansion ROM 80
Generic Completer-Initiator
Properties 55
Generic Completer-Target Properties 52
Generic Requester-Initiator
Properties 29
Generic Requester-Target Properties 61
Pattern Terms 94
Performance Sequencer 111
Power-Up Behavior 194
PPR Administration 131
PPR Test Setup 131
Requester-Initiator Behavior
Permutations 142
Requester-Initiator Block Transfers 30
Requester-Target Behavior 63
Requester-Target Behavior
Permutations 153
Reset Behavior 194
Split Completion Decoder 63
Split Condition 53
Target Decoder 41
Trace Memory 104
Trigger I/O 199
Trigger Sequencer 96

Programming CI Behavior Permutations
Example 152

Programming CT Behavior Permutations
Example 149

Programming Data Transfer
Data Transfer

Programming 28
Programming Generic Completer-Target
Properties

Example 53
Programming Interfaces 12
Programming Model

Performance Sequencer 113
Programming Options

Power-Up Control 195
Reset Control 195

Programming Requester-Initiator Block
Permutations 141

Programming Requester-Target Behavior
Permutations 155
Programming Steps 114

Behavior of Block Transfers 38
Block Transfers 31
Card Status Register Access 192
Completer-Initiator Behavior 59
Completer-Target Behavior 49
Completer-Target Behavior
Permutations 148
Connection 18
Data Generator 75
Data Memory 83
Decoder 43
Errors Injection 78
Generic Completer-Target Properties 52
Generic Requester-Initiator
Properties 29
Initialization 18
Mailbox Access via Control PC 198
Mailbox Access via PCI-X Bus 198
Modifying the Configuration Space 45
Pattern Terms 94
PPR Administration 132
PPR Report Generation 156
PPR Test Run 157
PPR Test Setup 132
Protocol Observer 91
Requester-Initiator Block
Permutations 140
Requester-Target Behavior 64
Requester-Target Behavior
Permutations 154
Scheduling Block Transfers 72
Scheduling Split Completions 72
Sequencer 99
Setting Power-Up and Testcard
Properties to the Host 195
Setting Power-Up and Testcard
Properties to the Testcard 195
Split Condition 54
Trace Memory 105
Trigger Sequencer 99
Writing a C Program 127

Programming the Exerciser
as Completer-Initiator Device 55
as Completer-Target Device 40
as Requester-Initiator Device 28
as Requester-Target Device 61

Programming the Mailbox
Example 199

Programming the Performance Sequencer
Example 115

Protocol Observer
Example 93
Programming Steps 91

R

RAND 131
Random Arbitration

Arbitration Algorithm 71
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 207

Index
Randomizing Algorithm 131
Reading the Testcard Status

Options 192
Relaxed Order 137
Repetition Length 125
Report

Analyzing 159
Listing 174

Report Generation (PPR)
Programming Steps 156

Report Properties
Report Section 160

Report Sections
Block Permutation Results 161
Block Permutations 160
General PPR Properties 159
Header 159
Master Block Permutation 160
Report Properties 160
Requester-Initiator Behavior
Permutation 167

Reporting
Card Status 191

Requester-Initiator Behavior Groups
(PPR) 142
Requester-Initiator Behavior Memory 35
Requester-Initiator Behavior Permutations

Programming 142
Requester-Initiator Block Permutations

Programming 134
Programming Steps 140

Requester-Initiator Block Transfers
Programming 30

Requester-Initiator Device
Programming the Exerciser 28

Requester-Intitiator Behaviors
Block Transfers 32
Memory Design 38

Requester-Target Behavior
Example 65
Programming 63
Programming Steps 64

Requester-Target Behavior Groups
(PPR) 153
Requester-Target Behavior Permutations

Programming 153
Programming Steps 154

Requester-Target Behaviors
Memory Design 65

Requester-Target Device
Programming the Exerciser 61

Reset Behavior
Programming 194

Reset Control
Programming Options 195

Resource
Block Permutation Properties 135

RS-232 Serial Interface
Initialization 17

Rule Mask 90
Running

PPR Test 157
Running a PPR Test

Example 157
Running the Exerciser 27

S

Scheduling Block Transfers
Example 72
Programming Steps 72

Scheduling Split Completions
Example 72
Programming Steps 72

Sequencer
Programming Steps 99
Set Up 97

Sequences
Generating 35

Setting Power-Up and Testcard Properties
to the Host

Programming Steps 195
Setting Power-Up and Testcard Properties
to the Testcard

Programming Steps 195
Setting the Configuration Space Register
Mask 45
Setting the Configuration Space Register
Value 45
Size Limit

Block Permutation Properties 136
Split Completion Decoder

Example 63
Programming 63

Split Condition
Example 54
Programming 53
Programming Steps 54

Start Address Alignment 136
Start Offset

Block Permutation Properties 136
State 97
Status Register

Interrupt 86
Interrupts 86
Mailbox 197

Storage Qualifier 104
Condition 98

Storing and Analyzing Bus Traffic
Benefit 22

Stressing on Multiple PCI/PCI-X Buses
Benefit 22

Synchronizing
Environment 189

System Assurance 119

System Integration 119

T

Target Decoder
Programming 41

Terminal Count
Trigger Sequencer 100

Test Design
Example 128

Testing Level 131
Testing Time

Optimizing 172
Requester-Initiator Behavior
Permutation 143
Requester-Initiator Block
Permutation 139

Trace Memory
Example 106
Filling 104
Programming 104
Programming Steps 105

Transaction Scheduler 68
Transfer Direction

Block Permutation Properties 134
Transition Condition 97
Trigger

Condition 98
Counter 104

Trigger I/O
Configuration 200
Programming 199

Trigger Sequencer
Components 96
Example 100
Feedback Counter 99
Pattern Terms 100
Programming 96
Programming Steps 99
Terminal Count 100

Tuple 123
Tuples

Block Permutation Properties 136

U

Uncovered Permutations 173
Unoccupied Prime Number 125
USB Port

Initialization 17

V

Value List 123
Values 123
Variation Parameters 142

Completer-Initiator Behavior 150
Completer-Target Behavior 147
Requester-Target Behavior 153
208 Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002

Index
W

Writing a C Program
Programming Steps 127
Agilent E2920 PCI-X Series Opt. 320 C-API/PPR Programmer’s Guide, August 2002 209

Publication Number: 5988-6092EN

	Contents
	About This Guide
	Documentation Overview
	Programming Overview
	Programming Interfaces
	C Programming Libraries
	Generic C-API Functionality
	Protocol Permutation and Randomization Functionality
	Exception Handling
	Getting Started
	How to Get Started
	Example for Getting Started

	Benefits

	Programming the Exerciser
	Reading From and Writing To the Memories
	Downloading Settings and Running the Exerciser
	Programming the Exerciser as a Requester-Initiator Device
	Programming Generic Requester-Initiator Properties
	Programming Requester-Initiator Block Transfers
	Programming the Behavior of Block Transfers

	Programming the Exerciser as a Completer-Target Device
	Programming a Target Decoder
	Programming the Configuration Space
	Programming the Completer-Target Behavior
	Programming Generic Completer-Target Properties
	Programming a Split Condition

	Programming the Exerciser as a Completer-Initiator Device
	Programming Generic Completer-Initiator Properties
	Programming the Completer-Initiator Behavior

	Programming the Exerciser as a Requester-Target Device
	Programming Generic Requester-Target Properties
	Programming a Split Completion Decoder
	Programming the Requester-Target Behavior

	Controlling the Exerciser
	Scheduling Block Transfers and Split Completions
	Programming the Data Generator
	Programming Errors Injection

	Programming the Expansion ROM
	Programming the Data Memory
	How to Program the Data Memory
	Example for Programming the Data Memory

	Programming Data Transfer To and From the Host
	Example for Host Access

	Programming PCI-X Interrupts
	How to Generate PCI-X Interrupts
	Example for Programming PCI-X Interrupts

	Programming the Analyzer
	Programming the Protocol Observer
	How to Program the Protocol Observer
	Example for Programming the Protocol Observer

	Programming Pattern Terms
	How to Program Pattern Terms
	Example for Programming Pattern Terms

	Programming the Trigger Sequencer
	How to Program the Trigger Sequencer
	Example for Programming the Trigger Sequencer

	Programming the Trace Memory
	How to Program the Trace Memory
	Example for Programming the Trace Memory

	Programming the Performance Sequencer
	How to Program the Performance Sequencer
	Example for Programming the Performance Sequencer

	Programming Protocol Permutator and Randomizer Properties
	Introduction
	Contributions of the PCI-X PPR Software
	Operation Principles

	Generating Permutations
	How to Write a Test Program
	Example Test Design
	Preparing for PPR Programming
	How to Prepare for PPR Programming
	Example for Preparing for PPR Programming

	Programming Requester- Initiator Block Permutations
	How to Program RI Block Permutations
	Example for Programming RI Block Permutations

	Programming RI Behavior Permutations
	How to Program RI Behavior Permutations
	Example for Programming RI Behavior Permutations

	Programming CT Behavior Permutations
	How to Program CT Behavior Permutations
	Example for Programming CT Behavior Permutations

	Programming CI Behavior Permutations
	How to Program CI Behavior Permutations
	Example for Programming CI Behavior Permutations

	Programming RT Behavior Permutations
	How to Program RT Behavior Permutations
	Example for Programming RT Behavior Permutations

	Generating PPR Reports
	How to Generate PPR Reports
	Example for Generating PPR Reports

	Running a PPR Test
	How to Run a PPR Test
	Example for Running a PPR Test

	Analyzing the Report
	Report Header
	Report of Block Permutations
	Report of Requester-Initiator Behavior Permutation
	Report of Requester-Initiator Block vs. Requester-Initiator Behavior Permutation

	Further Options and Possibilities
	Report Listing
	Code Listing

	Synchronizing the Environment
	Card Status Reporting
	How to Access the Card Status Register
	Example for Accessing the Card Status Register

	Generic Testcard Setup and Power-Up Control
	How to Program Generic Testcard Properties and Power-Up Control

	Programming the Mailbox
	How to Program the Mailbox
	Example for Programming the Mailbox

	Programming the Trigger I/O
	How to Program the Trigger I/O
	Example for Programming the Trigger I/O

	Programming the Display
	Example for Programming the Display

	Index

